Solve for x (complex solution)
x=\frac{-15+\sqrt{31}i}{128}\approx -0.1171875+0.043498159i
Graph
Share
Copied to clipboard
\left(1+8x\right)^{2}=\left(\sqrt{x}\right)^{2}
Square both sides of the equation.
1+16x+64x^{2}=\left(\sqrt{x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+8x\right)^{2}.
1+16x+64x^{2}=x
Calculate \sqrt{x} to the power of 2 and get x.
1+16x+64x^{2}-x=0
Subtract x from both sides.
1+15x+64x^{2}=0
Combine 16x and -x to get 15x.
64x^{2}+15x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-15±\sqrt{15^{2}-4\times 64}}{2\times 64}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 64 for a, 15 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-15±\sqrt{225-4\times 64}}{2\times 64}
Square 15.
x=\frac{-15±\sqrt{225-256}}{2\times 64}
Multiply -4 times 64.
x=\frac{-15±\sqrt{-31}}{2\times 64}
Add 225 to -256.
x=\frac{-15±\sqrt{31}i}{2\times 64}
Take the square root of -31.
x=\frac{-15±\sqrt{31}i}{128}
Multiply 2 times 64.
x=\frac{-15+\sqrt{31}i}{128}
Now solve the equation x=\frac{-15±\sqrt{31}i}{128} when ± is plus. Add -15 to i\sqrt{31}.
x=\frac{-\sqrt{31}i-15}{128}
Now solve the equation x=\frac{-15±\sqrt{31}i}{128} when ± is minus. Subtract i\sqrt{31} from -15.
x=\frac{-15+\sqrt{31}i}{128} x=\frac{-\sqrt{31}i-15}{128}
The equation is now solved.
1+8\times \frac{-15+\sqrt{31}i}{128}=\sqrt{\frac{-15+\sqrt{31}i}{128}}
Substitute \frac{-15+\sqrt{31}i}{128} for x in the equation 1+8x=\sqrt{x}.
\frac{1}{16}+\frac{1}{16}i\times 31^{\frac{1}{2}}=\frac{1}{16}+\frac{1}{16}i\times 31^{\frac{1}{2}}
Simplify. The value x=\frac{-15+\sqrt{31}i}{128} satisfies the equation.
1+8\times \frac{-\sqrt{31}i-15}{128}=\sqrt{\frac{-\sqrt{31}i-15}{128}}
Substitute \frac{-\sqrt{31}i-15}{128} for x in the equation 1+8x=\sqrt{x}.
\frac{1}{16}-\frac{1}{16}i\times 31^{\frac{1}{2}}=-\left(\frac{1}{16}-\frac{1}{16}i\times 31^{\frac{1}{2}}\right)
Simplify. The value x=\frac{-\sqrt{31}i-15}{128} does not satisfy the equation.
x=\frac{-15+\sqrt{31}i}{128}
Equation 8x+1=\sqrt{x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}