Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1+3x-3x^{2}=0
Use the distributive property to multiply 3x by 1-x.
-3x^{2}+3x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\left(-3\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 3 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-3\right)}}{2\left(-3\right)}
Square 3.
x=\frac{-3±\sqrt{9+12}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-3±\sqrt{21}}{2\left(-3\right)}
Add 9 to 12.
x=\frac{-3±\sqrt{21}}{-6}
Multiply 2 times -3.
x=\frac{\sqrt{21}-3}{-6}
Now solve the equation x=\frac{-3±\sqrt{21}}{-6} when ± is plus. Add -3 to \sqrt{21}.
x=-\frac{\sqrt{21}}{6}+\frac{1}{2}
Divide -3+\sqrt{21} by -6.
x=\frac{-\sqrt{21}-3}{-6}
Now solve the equation x=\frac{-3±\sqrt{21}}{-6} when ± is minus. Subtract \sqrt{21} from -3.
x=\frac{\sqrt{21}}{6}+\frac{1}{2}
Divide -3-\sqrt{21} by -6.
x=-\frac{\sqrt{21}}{6}+\frac{1}{2} x=\frac{\sqrt{21}}{6}+\frac{1}{2}
The equation is now solved.
1+3x-3x^{2}=0
Use the distributive property to multiply 3x by 1-x.
3x-3x^{2}=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
-3x^{2}+3x=-1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+3x}{-3}=-\frac{1}{-3}
Divide both sides by -3.
x^{2}+\frac{3}{-3}x=-\frac{1}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-x=-\frac{1}{-3}
Divide 3 by -3.
x^{2}-x=\frac{1}{3}
Divide -1 by -3.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{1}{3}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=\frac{1}{3}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{7}{12}
Add \frac{1}{3} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=\frac{7}{12}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{7}{12}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{21}}{6} x-\frac{1}{2}=-\frac{\sqrt{21}}{6}
Simplify.
x=\frac{\sqrt{21}}{6}+\frac{1}{2} x=-\frac{\sqrt{21}}{6}+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.