Evaluate
\frac{685}{252}\approx 2.718253968
Factor
\frac{5 \cdot 137}{2 ^ {2} \cdot 3 ^ {2} \cdot 7} = 2\frac{181}{252} = 2.7182539682539684
Share
Copied to clipboard
2+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+\frac{1}{120}+\frac{1}{720}+\frac{1}{5040}
Add 1 and 1 to get 2.
\frac{4}{2}+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+\frac{1}{120}+\frac{1}{720}+\frac{1}{5040}
Convert 2 to fraction \frac{4}{2}.
\frac{4+1}{2}+\frac{1}{6}+\frac{1}{24}+\frac{1}{120}+\frac{1}{720}+\frac{1}{5040}
Since \frac{4}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{5}{2}+\frac{1}{6}+\frac{1}{24}+\frac{1}{120}+\frac{1}{720}+\frac{1}{5040}
Add 4 and 1 to get 5.
\frac{15}{6}+\frac{1}{6}+\frac{1}{24}+\frac{1}{120}+\frac{1}{720}+\frac{1}{5040}
Least common multiple of 2 and 6 is 6. Convert \frac{5}{2} and \frac{1}{6} to fractions with denominator 6.
\frac{15+1}{6}+\frac{1}{24}+\frac{1}{120}+\frac{1}{720}+\frac{1}{5040}
Since \frac{15}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
\frac{16}{6}+\frac{1}{24}+\frac{1}{120}+\frac{1}{720}+\frac{1}{5040}
Add 15 and 1 to get 16.
\frac{8}{3}+\frac{1}{24}+\frac{1}{120}+\frac{1}{720}+\frac{1}{5040}
Reduce the fraction \frac{16}{6} to lowest terms by extracting and canceling out 2.
\frac{64}{24}+\frac{1}{24}+\frac{1}{120}+\frac{1}{720}+\frac{1}{5040}
Least common multiple of 3 and 24 is 24. Convert \frac{8}{3} and \frac{1}{24} to fractions with denominator 24.
\frac{64+1}{24}+\frac{1}{120}+\frac{1}{720}+\frac{1}{5040}
Since \frac{64}{24} and \frac{1}{24} have the same denominator, add them by adding their numerators.
\frac{65}{24}+\frac{1}{120}+\frac{1}{720}+\frac{1}{5040}
Add 64 and 1 to get 65.
\frac{325}{120}+\frac{1}{120}+\frac{1}{720}+\frac{1}{5040}
Least common multiple of 24 and 120 is 120. Convert \frac{65}{24} and \frac{1}{120} to fractions with denominator 120.
\frac{325+1}{120}+\frac{1}{720}+\frac{1}{5040}
Since \frac{325}{120} and \frac{1}{120} have the same denominator, add them by adding their numerators.
\frac{326}{120}+\frac{1}{720}+\frac{1}{5040}
Add 325 and 1 to get 326.
\frac{163}{60}+\frac{1}{720}+\frac{1}{5040}
Reduce the fraction \frac{326}{120} to lowest terms by extracting and canceling out 2.
\frac{1956}{720}+\frac{1}{720}+\frac{1}{5040}
Least common multiple of 60 and 720 is 720. Convert \frac{163}{60} and \frac{1}{720} to fractions with denominator 720.
\frac{1956+1}{720}+\frac{1}{5040}
Since \frac{1956}{720} and \frac{1}{720} have the same denominator, add them by adding their numerators.
\frac{1957}{720}+\frac{1}{5040}
Add 1956 and 1 to get 1957.
\frac{13699}{5040}+\frac{1}{5040}
Least common multiple of 720 and 5040 is 5040. Convert \frac{1957}{720} and \frac{1}{5040} to fractions with denominator 5040.
\frac{13699+1}{5040}
Since \frac{13699}{5040} and \frac{1}{5040} have the same denominator, add them by adding their numerators.
\frac{13700}{5040}
Add 13699 and 1 to get 13700.
\frac{685}{252}
Reduce the fraction \frac{13700}{5040} to lowest terms by extracting and canceling out 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}