Solve for x
x=36
Graph
Share
Copied to clipboard
60+x=\frac{2}{3}\left(180-x\right)
Multiply both sides of the equation by 60.
60+x=\frac{2}{3}\times 180+\frac{2}{3}\left(-1\right)x
Use the distributive property to multiply \frac{2}{3} by 180-x.
60+x=\frac{2\times 180}{3}+\frac{2}{3}\left(-1\right)x
Express \frac{2}{3}\times 180 as a single fraction.
60+x=\frac{360}{3}+\frac{2}{3}\left(-1\right)x
Multiply 2 and 180 to get 360.
60+x=120+\frac{2}{3}\left(-1\right)x
Divide 360 by 3 to get 120.
60+x=120-\frac{2}{3}x
Multiply \frac{2}{3} and -1 to get -\frac{2}{3}.
60+x+\frac{2}{3}x=120
Add \frac{2}{3}x to both sides.
60+\frac{5}{3}x=120
Combine x and \frac{2}{3}x to get \frac{5}{3}x.
\frac{5}{3}x=120-60
Subtract 60 from both sides.
\frac{5}{3}x=60
Subtract 60 from 120 to get 60.
x=60\times \frac{3}{5}
Multiply both sides by \frac{3}{5}, the reciprocal of \frac{5}{3}.
x=\frac{60\times 3}{5}
Express 60\times \frac{3}{5} as a single fraction.
x=\frac{180}{5}
Multiply 60 and 3 to get 180.
x=36
Divide 180 by 5 to get 36.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}