Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

factor(2-x^{2}-2x)
Add 1 and 1 to get 2.
-x^{2}-2x+2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times 2}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times 2}}{2\left(-1\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+4\times 2}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-2\right)±\sqrt{4+8}}{2\left(-1\right)}
Multiply 4 times 2.
x=\frac{-\left(-2\right)±\sqrt{12}}{2\left(-1\right)}
Add 4 to 8.
x=\frac{-\left(-2\right)±2\sqrt{3}}{2\left(-1\right)}
Take the square root of 12.
x=\frac{2±2\sqrt{3}}{2\left(-1\right)}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{3}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{3}+2}{-2}
Now solve the equation x=\frac{2±2\sqrt{3}}{-2} when ± is plus. Add 2 to 2\sqrt{3}.
x=-\left(\sqrt{3}+1\right)
Divide 2+2\sqrt{3} by -2.
x=\frac{2-2\sqrt{3}}{-2}
Now solve the equation x=\frac{2±2\sqrt{3}}{-2} when ± is minus. Subtract 2\sqrt{3} from 2.
x=\sqrt{3}-1
Divide 2-2\sqrt{3} by -2.
-x^{2}-2x+2=-\left(x-\left(-\left(\sqrt{3}+1\right)\right)\right)\left(x-\left(\sqrt{3}-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\left(1+\sqrt{3}\right) for x_{1} and -1+\sqrt{3} for x_{2}.
2-x^{2}-2x
Add 1 and 1 to get 2.