Solve for r
r=\frac{1}{2}=0.5
r=-\frac{1}{2}=-0.5
Share
Copied to clipboard
-r^{2}=\frac{3}{4}-1
Subtract 1 from both sides.
-r^{2}=-\frac{1}{4}
Subtract 1 from \frac{3}{4} to get -\frac{1}{4}.
r^{2}=\frac{-\frac{1}{4}}{-1}
Divide both sides by -1.
r^{2}=\frac{-1}{4\left(-1\right)}
Express \frac{-\frac{1}{4}}{-1} as a single fraction.
r^{2}=\frac{1}{4}
Cancel out -1 in both numerator and denominator.
r=\frac{1}{2} r=-\frac{1}{2}
Take the square root of both sides of the equation.
1-r^{2}-\frac{3}{4}=0
Subtract \frac{3}{4} from both sides.
\frac{1}{4}-r^{2}=0
Subtract \frac{3}{4} from 1 to get \frac{1}{4}.
-r^{2}+\frac{1}{4}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
r=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times \frac{1}{4}}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 0 for b, and \frac{1}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\left(-1\right)\times \frac{1}{4}}}{2\left(-1\right)}
Square 0.
r=\frac{0±\sqrt{4\times \frac{1}{4}}}{2\left(-1\right)}
Multiply -4 times -1.
r=\frac{0±\sqrt{1}}{2\left(-1\right)}
Multiply 4 times \frac{1}{4}.
r=\frac{0±1}{2\left(-1\right)}
Take the square root of 1.
r=\frac{0±1}{-2}
Multiply 2 times -1.
r=-\frac{1}{2}
Now solve the equation r=\frac{0±1}{-2} when ± is plus. Divide 1 by -2.
r=\frac{1}{2}
Now solve the equation r=\frac{0±1}{-2} when ± is minus. Divide -1 by -2.
r=-\frac{1}{2} r=\frac{1}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}