Solve for k (complex solution)
\left\{\begin{matrix}k=\frac{2i\pi n_{1}}{\ln(m)}+\log_{m}\left(1-x\right)\text{, }n_{1}\in \mathrm{Z}\text{, }&x\neq 1\text{ and }m\neq 1\text{ and }m\neq 0\\k\in \mathrm{C}\text{, }&\left(m=0\text{ and }x=1\right)\text{ or }\left(m=1\text{ and }x=0\right)\end{matrix}\right.
Solve for m (complex solution)
m=e^{\frac{Im(k)arg(1-x)+iRe(k)arg(1-x)}{\left(Re(k)\right)^{2}+\left(Im(k)\right)^{2}}-\frac{2iRe(k)\pi n_{1}}{\left(Re(k)\right)^{2}+\left(Im(k)\right)^{2}}-\frac{2\pi n_{1}Im(k)}{\left(Re(k)\right)^{2}+\left(Im(k)\right)^{2}}}\left(|1-x|\right)^{\frac{Re(k)-iIm(k)}{\left(Re(k)\right)^{2}+\left(Im(k)\right)^{2}}}
n_{1}\in \mathrm{Z}
Solve for k
\left\{\begin{matrix}k=\log_{m}\left(1-x\right)\text{, }&x<1\text{ and }m\neq 1\text{ and }m>0\\k\in \mathrm{R}\text{, }&\left(m=1\text{ and }x=0\right)\text{ or }\left(m=-1\text{ and }x=2\text{ and }Denominator(k)\text{bmod}2=1\text{ and }Numerator(k)\text{bmod}2=1\right)\\k>0\text{, }&m=0\text{ and }x=1\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=\left(1-x\right)^{\frac{1}{k}}\text{, }&\left(Numerator(k)\text{bmod}2=1\text{ and }Denominator(k)\text{bmod}2=1\text{ and }x>1\text{ and }\left(1-x\right)^{\frac{1}{k}}\neq 0\right)\text{ or }\left(\left(1-x\right)^{\frac{1}{k}}<0\text{ and }x<1\text{ and }k\neq 0\text{ and }Denominator(k)\text{bmod}2=1\right)\text{ or }\left(k>0\text{ and }x=1\right)\text{ or }\left(\left(1-x\right)^{\frac{1}{k}}>0\text{ and }x<1\text{ and }k\neq 0\right)\\m=-\left(1-x\right)^{\frac{1}{k}}\text{, }&\left(x>1\text{ and }Numerator(k)\text{bmod}2=1\text{ and }Numerator(k)\text{bmod}2=0\text{ and }Denominator(k)\text{bmod}2=1\text{ and }\left(1-x\right)^{\frac{1}{k}}\neq 0\right)\text{ or }\left(x<1\text{ and }k\neq 0\text{ and }\left(1-x\right)^{\frac{1}{k}}>0\text{ and }Numerator(k)\text{bmod}2=0\text{ and }Denominator(k)\text{bmod}2=1\right)\text{ or }\left(Numerator(k)\text{bmod}2=0\text{ and }x=1\text{ and }k>0\right)\text{ or }\left(x<1\text{ and }k\neq 0\text{ and }\left(1-x\right)^{\frac{1}{k}}<0\text{ and }Numerator(k)\text{bmod}2=0\right)\\m\neq 0\text{, }&k=0\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}