Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{bx+b+1}{cx+x+1}\text{, }&c=-1\text{ or }x\neq -\frac{1}{c+1}\\a\in \mathrm{C}\text{, }&x=\frac{c}{c+1}-1\text{ and }b=-1-\frac{1}{c}\text{ and }c\neq -1\text{ and }c\neq 0\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{1-a-ax-acx}{x+1}\text{, }&x\neq -1\\b\in \mathrm{C}\text{, }&a=-\frac{1}{c}\text{ and }x=-1\text{ and }c\neq 0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{bx+b+1}{cx+x+1}\text{, }&c=-1\text{ or }x\neq -\frac{1}{c+1}\\a\in \mathrm{R}\text{, }&x=\frac{c}{c+1}-1\text{ and }b=-1-\frac{1}{c}\text{ and }c\neq -1\text{ and }c\neq 0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{1-a-ax-acx}{x+1}\text{, }&x\neq -1\\b\in \mathrm{R}\text{, }&a=-\frac{1}{c}\text{ and }x=-1\text{ and }c\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
1-\left(ax+a\right)+b\left(x+1\right)=acx
Use the distributive property to multiply a by x+1.
1-ax-a+b\left(x+1\right)=acx
To find the opposite of ax+a, find the opposite of each term.
1-ax-a+bx+b=acx
Use the distributive property to multiply b by x+1.
1-ax-a+bx+b-acx=0
Subtract acx from both sides.
-ax-a+bx+b-acx=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
-ax-a+b-acx=-1-bx
Subtract bx from both sides.
-ax-a-acx=-1-bx-b
Subtract b from both sides.
\left(-x-1-cx\right)a=-1-bx-b
Combine all terms containing a.
\left(-cx-x-1\right)a=-bx-b-1
The equation is in standard form.
\frac{\left(-cx-x-1\right)a}{-cx-x-1}=\frac{-bx-b-1}{-cx-x-1}
Divide both sides by -x-1-cx.
a=\frac{-bx-b-1}{-cx-x-1}
Dividing by -x-1-cx undoes the multiplication by -x-1-cx.
a=\frac{bx+b+1}{cx+x+1}
Divide -1-bx-b by -x-1-cx.
1-\left(ax+a\right)+b\left(x+1\right)=acx
Use the distributive property to multiply a by x+1.
1-ax-a+b\left(x+1\right)=acx
To find the opposite of ax+a, find the opposite of each term.
1-ax-a+bx+b=acx
Use the distributive property to multiply b by x+1.
-ax-a+bx+b=acx-1
Subtract 1 from both sides.
-a+bx+b=acx-1+ax
Add ax to both sides.
bx+b=acx-1+ax+a
Add a to both sides.
\left(x+1\right)b=acx-1+ax+a
Combine all terms containing b.
\left(x+1\right)b=acx+ax+a-1
The equation is in standard form.
\frac{\left(x+1\right)b}{x+1}=\frac{acx+ax+a-1}{x+1}
Divide both sides by x+1.
b=\frac{acx+ax+a-1}{x+1}
Dividing by x+1 undoes the multiplication by x+1.
1-\left(ax+a\right)+b\left(x+1\right)=acx
Use the distributive property to multiply a by x+1.
1-ax-a+b\left(x+1\right)=acx
To find the opposite of ax+a, find the opposite of each term.
1-ax-a+bx+b=acx
Use the distributive property to multiply b by x+1.
1-ax-a+bx+b-acx=0
Subtract acx from both sides.
-ax-a+bx+b-acx=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
-ax-a+b-acx=-1-bx
Subtract bx from both sides.
-ax-a-acx=-1-bx-b
Subtract b from both sides.
\left(-x-1-cx\right)a=-1-bx-b
Combine all terms containing a.
\left(-cx-x-1\right)a=-bx-b-1
The equation is in standard form.
\frac{\left(-cx-x-1\right)a}{-cx-x-1}=\frac{-bx-b-1}{-cx-x-1}
Divide both sides by -x-1-cx.
a=\frac{-bx-b-1}{-cx-x-1}
Dividing by -x-1-cx undoes the multiplication by -x-1-cx.
a=\frac{bx+b+1}{cx+x+1}
Divide -1-bx-b by -x-1-cx.
1-\left(ax+a\right)+b\left(x+1\right)=acx
Use the distributive property to multiply a by x+1.
1-ax-a+b\left(x+1\right)=acx
To find the opposite of ax+a, find the opposite of each term.
1-ax-a+bx+b=acx
Use the distributive property to multiply b by x+1.
-ax-a+bx+b=acx-1
Subtract 1 from both sides.
-a+bx+b=acx-1+ax
Add ax to both sides.
bx+b=acx-1+ax+a
Add a to both sides.
\left(x+1\right)b=acx-1+ax+a
Combine all terms containing b.
\left(x+1\right)b=acx+ax+a-1
The equation is in standard form.
\frac{\left(x+1\right)b}{x+1}=\frac{acx+ax+a-1}{x+1}
Divide both sides by x+1.
b=\frac{acx+ax+a-1}{x+1}
Dividing by x+1 undoes the multiplication by x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}