Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for b
Tick mark Image
Graph

Similar Problems from Web Search

Share

1-\left(ax+a\right)+b\left(x+1\right)=acx
Use the distributive property to multiply a by x+1.
1-ax-a+b\left(x+1\right)=acx
To find the opposite of ax+a, find the opposite of each term.
1-ax-a+bx+b=acx
Use the distributive property to multiply b by x+1.
1-ax-a+bx+b-acx=0
Subtract acx from both sides.
-ax-a+bx+b-acx=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
-ax-a+b-acx=-1-bx
Subtract bx from both sides.
-ax-a-acx=-1-bx-b
Subtract b from both sides.
\left(-x-1-cx\right)a=-1-bx-b
Combine all terms containing a.
\left(-cx-x-1\right)a=-bx-b-1
The equation is in standard form.
\frac{\left(-cx-x-1\right)a}{-cx-x-1}=\frac{-bx-b-1}{-cx-x-1}
Divide both sides by -x-1-cx.
a=\frac{-bx-b-1}{-cx-x-1}
Dividing by -x-1-cx undoes the multiplication by -x-1-cx.
a=\frac{bx+b+1}{cx+x+1}
Divide -1-bx-b by -x-1-cx.
1-\left(ax+a\right)+b\left(x+1\right)=acx
Use the distributive property to multiply a by x+1.
1-ax-a+b\left(x+1\right)=acx
To find the opposite of ax+a, find the opposite of each term.
1-ax-a+bx+b=acx
Use the distributive property to multiply b by x+1.
-ax-a+bx+b=acx-1
Subtract 1 from both sides.
-a+bx+b=acx-1+ax
Add ax to both sides.
bx+b=acx-1+ax+a
Add a to both sides.
\left(x+1\right)b=acx-1+ax+a
Combine all terms containing b.
\left(x+1\right)b=acx+ax+a-1
The equation is in standard form.
\frac{\left(x+1\right)b}{x+1}=\frac{acx+ax+a-1}{x+1}
Divide both sides by x+1.
b=\frac{acx+ax+a-1}{x+1}
Dividing by x+1 undoes the multiplication by x+1.
1-\left(ax+a\right)+b\left(x+1\right)=acx
Use the distributive property to multiply a by x+1.
1-ax-a+b\left(x+1\right)=acx
To find the opposite of ax+a, find the opposite of each term.
1-ax-a+bx+b=acx
Use the distributive property to multiply b by x+1.
1-ax-a+bx+b-acx=0
Subtract acx from both sides.
-ax-a+bx+b-acx=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
-ax-a+b-acx=-1-bx
Subtract bx from both sides.
-ax-a-acx=-1-bx-b
Subtract b from both sides.
\left(-x-1-cx\right)a=-1-bx-b
Combine all terms containing a.
\left(-cx-x-1\right)a=-bx-b-1
The equation is in standard form.
\frac{\left(-cx-x-1\right)a}{-cx-x-1}=\frac{-bx-b-1}{-cx-x-1}
Divide both sides by -x-1-cx.
a=\frac{-bx-b-1}{-cx-x-1}
Dividing by -x-1-cx undoes the multiplication by -x-1-cx.
a=\frac{bx+b+1}{cx+x+1}
Divide -1-bx-b by -x-1-cx.
1-\left(ax+a\right)+b\left(x+1\right)=acx
Use the distributive property to multiply a by x+1.
1-ax-a+b\left(x+1\right)=acx
To find the opposite of ax+a, find the opposite of each term.
1-ax-a+bx+b=acx
Use the distributive property to multiply b by x+1.
-ax-a+bx+b=acx-1
Subtract 1 from both sides.
-a+bx+b=acx-1+ax
Add ax to both sides.
bx+b=acx-1+ax+a
Add a to both sides.
\left(x+1\right)b=acx-1+ax+a
Combine all terms containing b.
\left(x+1\right)b=acx+ax+a-1
The equation is in standard form.
\frac{\left(x+1\right)b}{x+1}=\frac{acx+ax+a-1}{x+1}
Divide both sides by x+1.
b=\frac{acx+ax+a-1}{x+1}
Dividing by x+1 undoes the multiplication by x+1.