Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

factor(26-a^{2}-10a)
Add 1 and 25 to get 26.
-a^{2}-10a+26=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-1\right)\times 26}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-10\right)±\sqrt{100-4\left(-1\right)\times 26}}{2\left(-1\right)}
Square -10.
a=\frac{-\left(-10\right)±\sqrt{100+4\times 26}}{2\left(-1\right)}
Multiply -4 times -1.
a=\frac{-\left(-10\right)±\sqrt{100+104}}{2\left(-1\right)}
Multiply 4 times 26.
a=\frac{-\left(-10\right)±\sqrt{204}}{2\left(-1\right)}
Add 100 to 104.
a=\frac{-\left(-10\right)±2\sqrt{51}}{2\left(-1\right)}
Take the square root of 204.
a=\frac{10±2\sqrt{51}}{2\left(-1\right)}
The opposite of -10 is 10.
a=\frac{10±2\sqrt{51}}{-2}
Multiply 2 times -1.
a=\frac{2\sqrt{51}+10}{-2}
Now solve the equation a=\frac{10±2\sqrt{51}}{-2} when ± is plus. Add 10 to 2\sqrt{51}.
a=-\left(\sqrt{51}+5\right)
Divide 10+2\sqrt{51} by -2.
a=\frac{10-2\sqrt{51}}{-2}
Now solve the equation a=\frac{10±2\sqrt{51}}{-2} when ± is minus. Subtract 2\sqrt{51} from 10.
a=\sqrt{51}-5
Divide 10-2\sqrt{51} by -2.
-a^{2}-10a+26=-\left(a-\left(-\left(\sqrt{51}+5\right)\right)\right)\left(a-\left(\sqrt{51}-5\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\left(5+\sqrt{51}\right) for x_{1} and -5+\sqrt{51} for x_{2}.
26-a^{2}-10a
Add 1 and 25 to get 26.