Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(1-9x^{6}\right)\left(1+9x^{6}\right)
Rewrite 1-81x^{12} as 1^{2}-\left(9x^{6}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(-9x^{6}+1\right)\left(9x^{6}+1\right)
Reorder the terms.
\left(1-3x^{3}\right)\left(1+3x^{3}\right)
Consider -9x^{6}+1. Rewrite -9x^{6}+1 as 1^{2}-\left(3x^{3}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(-3x^{3}+1\right)\left(3x^{3}+1\right)
Reorder the terms.
\left(-3x^{3}+1\right)\left(3x^{3}+1\right)\left(9x^{6}+1\right)
Rewrite the complete factored expression. The following polynomials are not factored since they do not have any rational roots: -3x^{3}+1,3x^{3}+1,9x^{6}+1.