Skip to main content
Solve for P
Tick mark Image

Similar Problems from Web Search

Share

-4P^{2}=-5-1
Subtract 1 from both sides.
-4P^{2}=-6
Subtract 1 from -5 to get -6.
P^{2}=\frac{-6}{-4}
Divide both sides by -4.
P^{2}=\frac{3}{2}
Reduce the fraction \frac{-6}{-4} to lowest terms by extracting and canceling out -2.
P=\frac{\sqrt{6}}{2} P=-\frac{\sqrt{6}}{2}
Take the square root of both sides of the equation.
1-4P^{2}+5=0
Add 5 to both sides.
6-4P^{2}=0
Add 1 and 5 to get 6.
-4P^{2}+6=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
P=\frac{0±\sqrt{0^{2}-4\left(-4\right)\times 6}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 0 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
P=\frac{0±\sqrt{-4\left(-4\right)\times 6}}{2\left(-4\right)}
Square 0.
P=\frac{0±\sqrt{16\times 6}}{2\left(-4\right)}
Multiply -4 times -4.
P=\frac{0±\sqrt{96}}{2\left(-4\right)}
Multiply 16 times 6.
P=\frac{0±4\sqrt{6}}{2\left(-4\right)}
Take the square root of 96.
P=\frac{0±4\sqrt{6}}{-8}
Multiply 2 times -4.
P=-\frac{\sqrt{6}}{2}
Now solve the equation P=\frac{0±4\sqrt{6}}{-8} when ± is plus.
P=\frac{\sqrt{6}}{2}
Now solve the equation P=\frac{0±4\sqrt{6}}{-8} when ± is minus.
P=-\frac{\sqrt{6}}{2} P=\frac{\sqrt{6}}{2}
The equation is now solved.