Solve for q_1
q_{1}=2-4q_{2}
Solve for q_2
q_{2}=-\frac{q_{1}}{4}+\frac{1}{2}
Share
Copied to clipboard
-2q_{2}-\frac{1}{2}q_{1}=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
-\frac{1}{2}q_{1}=-1+2q_{2}
Add 2q_{2} to both sides.
-\frac{1}{2}q_{1}=2q_{2}-1
The equation is in standard form.
\frac{-\frac{1}{2}q_{1}}{-\frac{1}{2}}=\frac{2q_{2}-1}{-\frac{1}{2}}
Multiply both sides by -2.
q_{1}=\frac{2q_{2}-1}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
q_{1}=2-4q_{2}
Divide -1+2q_{2} by -\frac{1}{2} by multiplying -1+2q_{2} by the reciprocal of -\frac{1}{2}.
-2q_{2}-\frac{1}{2}q_{1}=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
-2q_{2}=-1+\frac{1}{2}q_{1}
Add \frac{1}{2}q_{1} to both sides.
-2q_{2}=\frac{q_{1}}{2}-1
The equation is in standard form.
\frac{-2q_{2}}{-2}=\frac{\frac{q_{1}}{2}-1}{-2}
Divide both sides by -2.
q_{2}=\frac{\frac{q_{1}}{2}-1}{-2}
Dividing by -2 undoes the multiplication by -2.
q_{2}=-\frac{q_{1}}{4}+\frac{1}{2}
Divide -1+\frac{q_{1}}{2} by -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}