Evaluate
1-A_{2}^{4}
Factor
\left(A_{2}-1\right)\left(A_{2}+1\right)\left(-A_{2}^{2}-1\right)
Share
Copied to clipboard
1-\frac{A_{2}^{4}A_{4}^{4}}{A_{4}^{4}}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
1-A_{2}^{4}
Cancel out A_{4}^{4} in both numerator and denominator.
factor(1-\frac{A_{2}^{4}A_{4}^{4}}{A_{4}^{4}})
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
factor(1-A_{2}^{4})
Cancel out A_{4}^{4} in both numerator and denominator.
\left(1+A_{2}^{2}\right)\left(1-A_{2}^{2}\right)
Rewrite 1-A_{2}^{4} as 1^{2}-\left(-A_{2}^{2}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(A_{2}^{2}+1\right)\left(-A_{2}^{2}+1\right)
Reorder the terms.
\left(1-A_{2}\right)\left(1+A_{2}\right)
Consider -A_{2}^{2}+1. Rewrite -A_{2}^{2}+1 as 1^{2}-A_{2}^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(-A_{2}+1\right)\left(A_{2}+1\right)
Reorder the terms.
\left(-A_{2}+1\right)\left(A_{2}+1\right)\left(A_{2}^{2}+1\right)
Rewrite the complete factored expression. Polynomial A_{2}^{2}+1 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}