Solve for a
a=\frac{45\left(x+1\right)}{5x+49}
x\neq -1\text{ and }x\neq -\frac{49}{5}
Solve for x
x=-\frac{49a-45}{5\left(a-9\right)}
a\neq 9\text{ and }a\neq 0
Graph
Share
Copied to clipboard
45a-9a\left(3x-2\right)-5a\left(2x+1\right)=45\left(x+1\right)-3a\left(14x-3\right)
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 45a, the least common multiple of 5,9,a,15.
45a-\left(27xa-18a\right)-5a\left(2x+1\right)=45\left(x+1\right)-3a\left(14x-3\right)
Use the distributive property to multiply 9a by 3x-2.
45a-27xa+18a-5a\left(2x+1\right)=45\left(x+1\right)-3a\left(14x-3\right)
To find the opposite of 27xa-18a, find the opposite of each term.
63a-27xa-5a\left(2x+1\right)=45\left(x+1\right)-3a\left(14x-3\right)
Combine 45a and 18a to get 63a.
63a-27xa-\left(10xa+5a\right)=45\left(x+1\right)-3a\left(14x-3\right)
Use the distributive property to multiply 5a by 2x+1.
63a-27xa-10xa-5a=45\left(x+1\right)-3a\left(14x-3\right)
To find the opposite of 10xa+5a, find the opposite of each term.
63a-37xa-5a=45\left(x+1\right)-3a\left(14x-3\right)
Combine -27xa and -10xa to get -37xa.
58a-37xa=45\left(x+1\right)-3a\left(14x-3\right)
Combine 63a and -5a to get 58a.
58a-37xa=45x+45-3a\left(14x-3\right)
Use the distributive property to multiply 45 by x+1.
58a-37xa=45x+45-\left(42xa-9a\right)
Use the distributive property to multiply 3a by 14x-3.
58a-37xa=45x+45-42xa+9a
To find the opposite of 42xa-9a, find the opposite of each term.
58a-37xa+42xa=45x+45+9a
Add 42xa to both sides.
58a+5xa=45x+45+9a
Combine -37xa and 42xa to get 5xa.
58a+5xa-9a=45x+45
Subtract 9a from both sides.
49a+5xa=45x+45
Combine 58a and -9a to get 49a.
\left(49+5x\right)a=45x+45
Combine all terms containing a.
\left(5x+49\right)a=45x+45
The equation is in standard form.
\frac{\left(5x+49\right)a}{5x+49}=\frac{45x+45}{5x+49}
Divide both sides by 5x+49.
a=\frac{45x+45}{5x+49}
Dividing by 5x+49 undoes the multiplication by 5x+49.
a=\frac{45\left(x+1\right)}{5x+49}
Divide 45+45x by 5x+49.
a=\frac{45\left(x+1\right)}{5x+49}\text{, }a\neq 0
Variable a cannot be equal to 0.
45a-9a\left(3x-2\right)-5a\left(2x+1\right)=45\left(x+1\right)-3a\left(14x-3\right)
Multiply both sides of the equation by 45a, the least common multiple of 5,9,a,15.
45a-\left(27ax-18a\right)-5a\left(2x+1\right)=45\left(x+1\right)-3a\left(14x-3\right)
Use the distributive property to multiply 9a by 3x-2.
45a-27ax+18a-5a\left(2x+1\right)=45\left(x+1\right)-3a\left(14x-3\right)
To find the opposite of 27ax-18a, find the opposite of each term.
63a-27ax-5a\left(2x+1\right)=45\left(x+1\right)-3a\left(14x-3\right)
Combine 45a and 18a to get 63a.
63a-27ax-\left(10ax+5a\right)=45\left(x+1\right)-3a\left(14x-3\right)
Use the distributive property to multiply 5a by 2x+1.
63a-27ax-10ax-5a=45\left(x+1\right)-3a\left(14x-3\right)
To find the opposite of 10ax+5a, find the opposite of each term.
63a-37ax-5a=45\left(x+1\right)-3a\left(14x-3\right)
Combine -27ax and -10ax to get -37ax.
58a-37ax=45\left(x+1\right)-3a\left(14x-3\right)
Combine 63a and -5a to get 58a.
58a-37ax=45x+45-3a\left(14x-3\right)
Use the distributive property to multiply 45 by x+1.
58a-37ax=45x+45-\left(42ax-9a\right)
Use the distributive property to multiply 3a by 14x-3.
58a-37ax=45x+45-42ax+9a
To find the opposite of 42ax-9a, find the opposite of each term.
58a-37ax-45x=45-42ax+9a
Subtract 45x from both sides.
58a-37ax-45x+42ax=45+9a
Add 42ax to both sides.
58a+5ax-45x=45+9a
Combine -37ax and 42ax to get 5ax.
5ax-45x=45+9a-58a
Subtract 58a from both sides.
5ax-45x=45-49a
Combine 9a and -58a to get -49a.
\left(5a-45\right)x=45-49a
Combine all terms containing x.
\frac{\left(5a-45\right)x}{5a-45}=\frac{45-49a}{5a-45}
Divide both sides by -45+5a.
x=\frac{45-49a}{5a-45}
Dividing by -45+5a undoes the multiplication by -45+5a.
x=\frac{45-49a}{5\left(a-9\right)}
Divide 45-49a by -45+5a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}