Evaluate
\frac{7a+11}{10}
Expand
\frac{7a+11}{10}
Share
Copied to clipboard
1-\frac{-1}{5}+\frac{2a-1}{2}-\frac{3a-4}{10}
Subtract 3 from 2 to get -1.
1-\left(-\frac{1}{5}\right)+\frac{2a-1}{2}-\frac{3a-4}{10}
Fraction \frac{-1}{5} can be rewritten as -\frac{1}{5} by extracting the negative sign.
1+\frac{1}{5}+\frac{2a-1}{2}-\frac{3a-4}{10}
The opposite of -\frac{1}{5} is \frac{1}{5}.
\frac{5}{5}+\frac{1}{5}+\frac{2a-1}{2}-\frac{3a-4}{10}
Convert 1 to fraction \frac{5}{5}.
\frac{5+1}{5}+\frac{2a-1}{2}-\frac{3a-4}{10}
Since \frac{5}{5} and \frac{1}{5} have the same denominator, add them by adding their numerators.
\frac{6}{5}+\frac{2a-1}{2}-\frac{3a-4}{10}
Add 5 and 1 to get 6.
\frac{6\times 2}{10}+\frac{5\left(2a-1\right)}{10}-\frac{3a-4}{10}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 2 is 10. Multiply \frac{6}{5} times \frac{2}{2}. Multiply \frac{2a-1}{2} times \frac{5}{5}.
\frac{6\times 2+5\left(2a-1\right)}{10}-\frac{3a-4}{10}
Since \frac{6\times 2}{10} and \frac{5\left(2a-1\right)}{10} have the same denominator, add them by adding their numerators.
\frac{12+10a-5}{10}-\frac{3a-4}{10}
Do the multiplications in 6\times 2+5\left(2a-1\right).
\frac{7+10a}{10}-\frac{3a-4}{10}
Combine like terms in 12+10a-5.
\frac{7+10a-\left(3a-4\right)}{10}
Since \frac{7+10a}{10} and \frac{3a-4}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{7+10a-3a+4}{10}
Do the multiplications in 7+10a-\left(3a-4\right).
\frac{11+7a}{10}
Combine like terms in 7+10a-3a+4.
1-\frac{-1}{5}+\frac{2a-1}{2}-\frac{3a-4}{10}
Subtract 3 from 2 to get -1.
1-\left(-\frac{1}{5}\right)+\frac{2a-1}{2}-\frac{3a-4}{10}
Fraction \frac{-1}{5} can be rewritten as -\frac{1}{5} by extracting the negative sign.
1+\frac{1}{5}+\frac{2a-1}{2}-\frac{3a-4}{10}
The opposite of -\frac{1}{5} is \frac{1}{5}.
\frac{5}{5}+\frac{1}{5}+\frac{2a-1}{2}-\frac{3a-4}{10}
Convert 1 to fraction \frac{5}{5}.
\frac{5+1}{5}+\frac{2a-1}{2}-\frac{3a-4}{10}
Since \frac{5}{5} and \frac{1}{5} have the same denominator, add them by adding their numerators.
\frac{6}{5}+\frac{2a-1}{2}-\frac{3a-4}{10}
Add 5 and 1 to get 6.
\frac{6\times 2}{10}+\frac{5\left(2a-1\right)}{10}-\frac{3a-4}{10}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 2 is 10. Multiply \frac{6}{5} times \frac{2}{2}. Multiply \frac{2a-1}{2} times \frac{5}{5}.
\frac{6\times 2+5\left(2a-1\right)}{10}-\frac{3a-4}{10}
Since \frac{6\times 2}{10} and \frac{5\left(2a-1\right)}{10} have the same denominator, add them by adding their numerators.
\frac{12+10a-5}{10}-\frac{3a-4}{10}
Do the multiplications in 6\times 2+5\left(2a-1\right).
\frac{7+10a}{10}-\frac{3a-4}{10}
Combine like terms in 12+10a-5.
\frac{7+10a-\left(3a-4\right)}{10}
Since \frac{7+10a}{10} and \frac{3a-4}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{7+10a-3a+4}{10}
Do the multiplications in 7+10a-\left(3a-4\right).
\frac{11+7a}{10}
Combine like terms in 7+10a-3a+4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}