Solve for x (complex solution)
x=\frac{-\sqrt{15}i+3}{2}\approx 1.5-1.936491673i
x=\frac{3+\sqrt{15}i}{2}\approx 1.5+1.936491673i
Graph
Share
Copied to clipboard
x-1-2=\left(\frac{1}{2}x-\frac{1}{2}\right)x
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by x-1.
x-3=\left(\frac{1}{2}x-\frac{1}{2}\right)x
Subtract 2 from -1 to get -3.
x-3=\frac{1}{2}x^{2}-\frac{1}{2}x
Use the distributive property to multiply \frac{1}{2}x-\frac{1}{2} by x.
x-3-\frac{1}{2}x^{2}=-\frac{1}{2}x
Subtract \frac{1}{2}x^{2} from both sides.
x-3-\frac{1}{2}x^{2}+\frac{1}{2}x=0
Add \frac{1}{2}x to both sides.
\frac{3}{2}x-3-\frac{1}{2}x^{2}=0
Combine x and \frac{1}{2}x to get \frac{3}{2}x.
-\frac{1}{2}x^{2}+\frac{3}{2}x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{3}{2}±\sqrt{\left(\frac{3}{2}\right)^{2}-4\left(-\frac{1}{2}\right)\left(-3\right)}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, \frac{3}{2} for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}-4\left(-\frac{1}{2}\right)\left(-3\right)}}{2\left(-\frac{1}{2}\right)}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}+2\left(-3\right)}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
x=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}-6}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times -3.
x=\frac{-\frac{3}{2}±\sqrt{-\frac{15}{4}}}{2\left(-\frac{1}{2}\right)}
Add \frac{9}{4} to -6.
x=\frac{-\frac{3}{2}±\frac{\sqrt{15}i}{2}}{2\left(-\frac{1}{2}\right)}
Take the square root of -\frac{15}{4}.
x=\frac{-\frac{3}{2}±\frac{\sqrt{15}i}{2}}{-1}
Multiply 2 times -\frac{1}{2}.
x=\frac{-3+\sqrt{15}i}{-2}
Now solve the equation x=\frac{-\frac{3}{2}±\frac{\sqrt{15}i}{2}}{-1} when ± is plus. Add -\frac{3}{2} to \frac{i\sqrt{15}}{2}.
x=\frac{-\sqrt{15}i+3}{2}
Divide \frac{-3+i\sqrt{15}}{2} by -1.
x=\frac{-\sqrt{15}i-3}{-2}
Now solve the equation x=\frac{-\frac{3}{2}±\frac{\sqrt{15}i}{2}}{-1} when ± is minus. Subtract \frac{i\sqrt{15}}{2} from -\frac{3}{2}.
x=\frac{3+\sqrt{15}i}{2}
Divide \frac{-3-i\sqrt{15}}{2} by -1.
x=\frac{-\sqrt{15}i+3}{2} x=\frac{3+\sqrt{15}i}{2}
The equation is now solved.
x-1-2=\left(\frac{1}{2}x-\frac{1}{2}\right)x
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by x-1.
x-3=\left(\frac{1}{2}x-\frac{1}{2}\right)x
Subtract 2 from -1 to get -3.
x-3=\frac{1}{2}x^{2}-\frac{1}{2}x
Use the distributive property to multiply \frac{1}{2}x-\frac{1}{2} by x.
x-3-\frac{1}{2}x^{2}=-\frac{1}{2}x
Subtract \frac{1}{2}x^{2} from both sides.
x-3-\frac{1}{2}x^{2}+\frac{1}{2}x=0
Add \frac{1}{2}x to both sides.
\frac{3}{2}x-3-\frac{1}{2}x^{2}=0
Combine x and \frac{1}{2}x to get \frac{3}{2}x.
\frac{3}{2}x-\frac{1}{2}x^{2}=3
Add 3 to both sides. Anything plus zero gives itself.
-\frac{1}{2}x^{2}+\frac{3}{2}x=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{1}{2}x^{2}+\frac{3}{2}x}{-\frac{1}{2}}=\frac{3}{-\frac{1}{2}}
Multiply both sides by -2.
x^{2}+\frac{\frac{3}{2}}{-\frac{1}{2}}x=\frac{3}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
x^{2}-3x=\frac{3}{-\frac{1}{2}}
Divide \frac{3}{2} by -\frac{1}{2} by multiplying \frac{3}{2} by the reciprocal of -\frac{1}{2}.
x^{2}-3x=-6
Divide 3 by -\frac{1}{2} by multiplying 3 by the reciprocal of -\frac{1}{2}.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-6+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=-6+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=-\frac{15}{4}
Add -6 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=-\frac{15}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{-\frac{15}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{15}i}{2} x-\frac{3}{2}=-\frac{\sqrt{15}i}{2}
Simplify.
x=\frac{3+\sqrt{15}i}{2} x=\frac{-\sqrt{15}i+3}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}