Evaluate
-\frac{1}{60}\approx -0.016666667
Factor
-\frac{1}{60} = -0.016666666666666666
Share
Copied to clipboard
1-\left(-0.4+\frac{5}{6}\right)-\frac{7}{12}
The opposite of -\frac{5}{6} is \frac{5}{6}.
1-\left(-\frac{2}{5}+\frac{5}{6}\right)-\frac{7}{12}
Convert decimal number -0.4 to fraction -\frac{4}{10}. Reduce the fraction -\frac{4}{10} to lowest terms by extracting and canceling out 2.
1-\left(-\frac{12}{30}+\frac{25}{30}\right)-\frac{7}{12}
Least common multiple of 5 and 6 is 30. Convert -\frac{2}{5} and \frac{5}{6} to fractions with denominator 30.
1-\frac{-12+25}{30}-\frac{7}{12}
Since -\frac{12}{30} and \frac{25}{30} have the same denominator, add them by adding their numerators.
1-\frac{13}{30}-\frac{7}{12}
Add -12 and 25 to get 13.
\frac{30}{30}-\frac{13}{30}-\frac{7}{12}
Convert 1 to fraction \frac{30}{30}.
\frac{30-13}{30}-\frac{7}{12}
Since \frac{30}{30} and \frac{13}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{17}{30}-\frac{7}{12}
Subtract 13 from 30 to get 17.
\frac{34}{60}-\frac{35}{60}
Least common multiple of 30 and 12 is 60. Convert \frac{17}{30} and \frac{7}{12} to fractions with denominator 60.
\frac{34-35}{60}
Since \frac{34}{60} and \frac{35}{60} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{60}
Subtract 35 from 34 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}