Evaluate
\frac{9}{10}=0.9
Factor
\frac{3 ^ {2}}{2 \cdot 5} = 0.9
Share
Copied to clipboard
\frac{5+2}{5}-\frac{\frac{3\times 3+1}{3}-\frac{2\times 6+5}{6}\times \frac{25}{100}}{\frac{5\times 4+1}{4}}
Multiply 1 and 5 to get 5.
\frac{7}{5}-\frac{\frac{3\times 3+1}{3}-\frac{2\times 6+5}{6}\times \frac{25}{100}}{\frac{5\times 4+1}{4}}
Add 5 and 2 to get 7.
\frac{7}{5}-\frac{\frac{9+1}{3}-\frac{2\times 6+5}{6}\times \frac{25}{100}}{\frac{5\times 4+1}{4}}
Multiply 3 and 3 to get 9.
\frac{7}{5}-\frac{\frac{10}{3}-\frac{2\times 6+5}{6}\times \frac{25}{100}}{\frac{5\times 4+1}{4}}
Add 9 and 1 to get 10.
\frac{7}{5}-\frac{\frac{10}{3}-\frac{12+5}{6}\times \frac{25}{100}}{\frac{5\times 4+1}{4}}
Multiply 2 and 6 to get 12.
\frac{7}{5}-\frac{\frac{10}{3}-\frac{17}{6}\times \frac{25}{100}}{\frac{5\times 4+1}{4}}
Add 12 and 5 to get 17.
\frac{7}{5}-\frac{\frac{10}{3}-\frac{17}{6}\times \frac{1}{4}}{\frac{5\times 4+1}{4}}
Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
\frac{7}{5}-\frac{\frac{10}{3}-\frac{17\times 1}{6\times 4}}{\frac{5\times 4+1}{4}}
Multiply \frac{17}{6} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{7}{5}-\frac{\frac{10}{3}-\frac{17}{24}}{\frac{5\times 4+1}{4}}
Do the multiplications in the fraction \frac{17\times 1}{6\times 4}.
\frac{7}{5}-\frac{\frac{80}{24}-\frac{17}{24}}{\frac{5\times 4+1}{4}}
Least common multiple of 3 and 24 is 24. Convert \frac{10}{3} and \frac{17}{24} to fractions with denominator 24.
\frac{7}{5}-\frac{\frac{80-17}{24}}{\frac{5\times 4+1}{4}}
Since \frac{80}{24} and \frac{17}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{5}-\frac{\frac{63}{24}}{\frac{5\times 4+1}{4}}
Subtract 17 from 80 to get 63.
\frac{7}{5}-\frac{\frac{21}{8}}{\frac{5\times 4+1}{4}}
Reduce the fraction \frac{63}{24} to lowest terms by extracting and canceling out 3.
\frac{7}{5}-\frac{\frac{21}{8}}{\frac{20+1}{4}}
Multiply 5 and 4 to get 20.
\frac{7}{5}-\frac{\frac{21}{8}}{\frac{21}{4}}
Add 20 and 1 to get 21.
\frac{7}{5}-\frac{21}{8}\times \frac{4}{21}
Divide \frac{21}{8} by \frac{21}{4} by multiplying \frac{21}{8} by the reciprocal of \frac{21}{4}.
\frac{7}{5}-\frac{21\times 4}{8\times 21}
Multiply \frac{21}{8} times \frac{4}{21} by multiplying numerator times numerator and denominator times denominator.
\frac{7}{5}-\frac{4}{8}
Cancel out 21 in both numerator and denominator.
\frac{7}{5}-\frac{1}{2}
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
\frac{14}{10}-\frac{5}{10}
Least common multiple of 5 and 2 is 10. Convert \frac{7}{5} and \frac{1}{2} to fractions with denominator 10.
\frac{14-5}{10}
Since \frac{14}{10} and \frac{5}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{9}{10}
Subtract 5 from 14 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}