Evaluate
19.2
Factor
\frac{3 \cdot 2 ^ {5}}{5} = 19\frac{1}{5} = 19.2
Share
Copied to clipboard
\frac{8+5}{8}\times 3.2-\frac{\frac{3\times 8+1}{8}}{\frac{5}{16}}+\frac{3\times 5+1}{5}\times \frac{7\times 2+1}{2}
Multiply 1 and 8 to get 8.
\frac{13}{8}\times 3.2-\frac{\frac{3\times 8+1}{8}}{\frac{5}{16}}+\frac{3\times 5+1}{5}\times \frac{7\times 2+1}{2}
Add 8 and 5 to get 13.
\frac{13}{8}\times \frac{16}{5}-\frac{\frac{3\times 8+1}{8}}{\frac{5}{16}}+\frac{3\times 5+1}{5}\times \frac{7\times 2+1}{2}
Convert decimal number 3.2 to fraction \frac{32}{10}. Reduce the fraction \frac{32}{10} to lowest terms by extracting and canceling out 2.
\frac{13\times 16}{8\times 5}-\frac{\frac{3\times 8+1}{8}}{\frac{5}{16}}+\frac{3\times 5+1}{5}\times \frac{7\times 2+1}{2}
Multiply \frac{13}{8} times \frac{16}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{208}{40}-\frac{\frac{3\times 8+1}{8}}{\frac{5}{16}}+\frac{3\times 5+1}{5}\times \frac{7\times 2+1}{2}
Do the multiplications in the fraction \frac{13\times 16}{8\times 5}.
\frac{26}{5}-\frac{\frac{3\times 8+1}{8}}{\frac{5}{16}}+\frac{3\times 5+1}{5}\times \frac{7\times 2+1}{2}
Reduce the fraction \frac{208}{40} to lowest terms by extracting and canceling out 8.
\frac{26}{5}-\frac{\left(3\times 8+1\right)\times 16}{8\times 5}+\frac{3\times 5+1}{5}\times \frac{7\times 2+1}{2}
Divide \frac{3\times 8+1}{8} by \frac{5}{16} by multiplying \frac{3\times 8+1}{8} by the reciprocal of \frac{5}{16}.
\frac{26}{5}-\frac{2\left(1+3\times 8\right)}{5}+\frac{3\times 5+1}{5}\times \frac{7\times 2+1}{2}
Cancel out 8 in both numerator and denominator.
\frac{26}{5}-\frac{2\left(1+24\right)}{5}+\frac{3\times 5+1}{5}\times \frac{7\times 2+1}{2}
Multiply 3 and 8 to get 24.
\frac{26}{5}-\frac{2\times 25}{5}+\frac{3\times 5+1}{5}\times \frac{7\times 2+1}{2}
Add 1 and 24 to get 25.
\frac{26}{5}-\frac{50}{5}+\frac{3\times 5+1}{5}\times \frac{7\times 2+1}{2}
Multiply 2 and 25 to get 50.
\frac{26-50}{5}+\frac{3\times 5+1}{5}\times \frac{7\times 2+1}{2}
Since \frac{26}{5} and \frac{50}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{24}{5}+\frac{3\times 5+1}{5}\times \frac{7\times 2+1}{2}
Subtract 50 from 26 to get -24.
-\frac{24}{5}+\frac{15+1}{5}\times \frac{7\times 2+1}{2}
Multiply 3 and 5 to get 15.
-\frac{24}{5}+\frac{16}{5}\times \frac{7\times 2+1}{2}
Add 15 and 1 to get 16.
-\frac{24}{5}+\frac{16}{5}\times \frac{14+1}{2}
Multiply 7 and 2 to get 14.
-\frac{24}{5}+\frac{16}{5}\times \frac{15}{2}
Add 14 and 1 to get 15.
-\frac{24}{5}+\frac{16\times 15}{5\times 2}
Multiply \frac{16}{5} times \frac{15}{2} by multiplying numerator times numerator and denominator times denominator.
-\frac{24}{5}+\frac{240}{10}
Do the multiplications in the fraction \frac{16\times 15}{5\times 2}.
-\frac{24}{5}+24
Divide 240 by 10 to get 24.
-\frac{24}{5}+\frac{120}{5}
Convert 24 to fraction \frac{120}{5}.
\frac{-24+120}{5}
Since -\frac{24}{5} and \frac{120}{5} have the same denominator, add them by adding their numerators.
\frac{96}{5}
Add -24 and 120 to get 96.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}