Evaluate
\frac{229}{14}\approx 16.357142857
Factor
\frac{229}{2 \cdot 7} = 16\frac{5}{14} = 16.357142857142858
Share
Copied to clipboard
\frac{28+5}{28}\left(\frac{\frac{7\times 7+5}{7}}{\frac{3\times 5+3}{5}}-\frac{1}{7}\right)+\frac{\frac{5\times 6+5}{6}}{\frac{5}{12}}
Multiply 1 and 28 to get 28.
\frac{33}{28}\left(\frac{\frac{7\times 7+5}{7}}{\frac{3\times 5+3}{5}}-\frac{1}{7}\right)+\frac{\frac{5\times 6+5}{6}}{\frac{5}{12}}
Add 28 and 5 to get 33.
\frac{33}{28}\left(\frac{\left(7\times 7+5\right)\times 5}{7\left(3\times 5+3\right)}-\frac{1}{7}\right)+\frac{\frac{5\times 6+5}{6}}{\frac{5}{12}}
Divide \frac{7\times 7+5}{7} by \frac{3\times 5+3}{5} by multiplying \frac{7\times 7+5}{7} by the reciprocal of \frac{3\times 5+3}{5}.
\frac{33}{28}\left(\frac{\left(49+5\right)\times 5}{7\left(3\times 5+3\right)}-\frac{1}{7}\right)+\frac{\frac{5\times 6+5}{6}}{\frac{5}{12}}
Multiply 7 and 7 to get 49.
\frac{33}{28}\left(\frac{54\times 5}{7\left(3\times 5+3\right)}-\frac{1}{7}\right)+\frac{\frac{5\times 6+5}{6}}{\frac{5}{12}}
Add 49 and 5 to get 54.
\frac{33}{28}\left(\frac{270}{7\left(3\times 5+3\right)}-\frac{1}{7}\right)+\frac{\frac{5\times 6+5}{6}}{\frac{5}{12}}
Multiply 54 and 5 to get 270.
\frac{33}{28}\left(\frac{270}{7\left(15+3\right)}-\frac{1}{7}\right)+\frac{\frac{5\times 6+5}{6}}{\frac{5}{12}}
Multiply 3 and 5 to get 15.
\frac{33}{28}\left(\frac{270}{7\times 18}-\frac{1}{7}\right)+\frac{\frac{5\times 6+5}{6}}{\frac{5}{12}}
Add 15 and 3 to get 18.
\frac{33}{28}\left(\frac{270}{126}-\frac{1}{7}\right)+\frac{\frac{5\times 6+5}{6}}{\frac{5}{12}}
Multiply 7 and 18 to get 126.
\frac{33}{28}\left(\frac{15}{7}-\frac{1}{7}\right)+\frac{\frac{5\times 6+5}{6}}{\frac{5}{12}}
Reduce the fraction \frac{270}{126} to lowest terms by extracting and canceling out 18.
\frac{33}{28}\times \frac{15-1}{7}+\frac{\frac{5\times 6+5}{6}}{\frac{5}{12}}
Since \frac{15}{7} and \frac{1}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{33}{28}\times \frac{14}{7}+\frac{\frac{5\times 6+5}{6}}{\frac{5}{12}}
Subtract 1 from 15 to get 14.
\frac{33}{28}\times 2+\frac{\frac{5\times 6+5}{6}}{\frac{5}{12}}
Divide 14 by 7 to get 2.
\frac{33\times 2}{28}+\frac{\frac{5\times 6+5}{6}}{\frac{5}{12}}
Express \frac{33}{28}\times 2 as a single fraction.
\frac{66}{28}+\frac{\frac{5\times 6+5}{6}}{\frac{5}{12}}
Multiply 33 and 2 to get 66.
\frac{33}{14}+\frac{\frac{5\times 6+5}{6}}{\frac{5}{12}}
Reduce the fraction \frac{66}{28} to lowest terms by extracting and canceling out 2.
\frac{33}{14}+\frac{\left(5\times 6+5\right)\times 12}{6\times 5}
Divide \frac{5\times 6+5}{6} by \frac{5}{12} by multiplying \frac{5\times 6+5}{6} by the reciprocal of \frac{5}{12}.
\frac{33}{14}+\frac{2\left(5+5\times 6\right)}{5}
Cancel out 6 in both numerator and denominator.
\frac{33}{14}+\frac{2\left(5+30\right)}{5}
Multiply 5 and 6 to get 30.
\frac{33}{14}+\frac{2\times 35}{5}
Add 5 and 30 to get 35.
\frac{33}{14}+\frac{70}{5}
Multiply 2 and 35 to get 70.
\frac{33}{14}+14
Divide 70 by 5 to get 14.
\frac{33}{14}+\frac{196}{14}
Convert 14 to fraction \frac{196}{14}.
\frac{33+196}{14}
Since \frac{33}{14} and \frac{196}{14} have the same denominator, add them by adding their numerators.
\frac{229}{14}
Add 33 and 196 to get 229.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}