Evaluate
\frac{1166}{75}\approx 15.546666667
Factor
\frac{2 \cdot 11 \cdot 53}{3 \cdot 5 ^ {2}} = 15\frac{41}{75} = 15.546666666666667
Share
Copied to clipboard
1\times \frac{10\times 20+12}{20\times 20}+\frac{15\times 1200+20}{1200}
Express \frac{\frac{10\times 20+12}{20}}{20} as a single fraction.
1\times \frac{200+12}{20\times 20}+\frac{15\times 1200+20}{1200}
Multiply 10 and 20 to get 200.
1\times \frac{212}{20\times 20}+\frac{15\times 1200+20}{1200}
Add 200 and 12 to get 212.
1\times \frac{212}{400}+\frac{15\times 1200+20}{1200}
Multiply 20 and 20 to get 400.
1\times \frac{53}{100}+\frac{15\times 1200+20}{1200}
Reduce the fraction \frac{212}{400} to lowest terms by extracting and canceling out 4.
\frac{53}{100}+\frac{15\times 1200+20}{1200}
Multiply 1 and \frac{53}{100} to get \frac{53}{100}.
\frac{53}{100}+\frac{18000+20}{1200}
Multiply 15 and 1200 to get 18000.
\frac{53}{100}+\frac{18020}{1200}
Add 18000 and 20 to get 18020.
\frac{53}{100}+\frac{901}{60}
Reduce the fraction \frac{18020}{1200} to lowest terms by extracting and canceling out 20.
\frac{159}{300}+\frac{4505}{300}
Least common multiple of 100 and 60 is 300. Convert \frac{53}{100} and \frac{901}{60} to fractions with denominator 300.
\frac{159+4505}{300}
Since \frac{159}{300} and \frac{4505}{300} have the same denominator, add them by adding their numerators.
\frac{4664}{300}
Add 159 and 4505 to get 4664.
\frac{1166}{75}
Reduce the fraction \frac{4664}{300} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}