Evaluate
\frac{4}{3}\approx 1.333333333
Factor
\frac{2 ^ {2}}{3} = 1\frac{1}{3} = 1.3333333333333333
Share
Copied to clipboard
\frac{\frac{2+1}{2}\times 1.6}{\frac{1\times 5+4}{5}}
Multiply 1 and 2 to get 2.
\frac{\frac{3}{2}\times 1.6}{\frac{1\times 5+4}{5}}
Add 2 and 1 to get 3.
\frac{\frac{3}{2}\times \frac{8}{5}}{\frac{1\times 5+4}{5}}
Convert decimal number 1.6 to fraction \frac{16}{10}. Reduce the fraction \frac{16}{10} to lowest terms by extracting and canceling out 2.
\frac{\frac{3\times 8}{2\times 5}}{\frac{1\times 5+4}{5}}
Multiply \frac{3}{2} times \frac{8}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{24}{10}}{\frac{1\times 5+4}{5}}
Do the multiplications in the fraction \frac{3\times 8}{2\times 5}.
\frac{\frac{12}{5}}{\frac{1\times 5+4}{5}}
Reduce the fraction \frac{24}{10} to lowest terms by extracting and canceling out 2.
\frac{\frac{12}{5}}{\frac{5+4}{5}}
Multiply 1 and 5 to get 5.
\frac{\frac{12}{5}}{\frac{9}{5}}
Add 5 and 4 to get 9.
\frac{12}{5}\times \frac{5}{9}
Divide \frac{12}{5} by \frac{9}{5} by multiplying \frac{12}{5} by the reciprocal of \frac{9}{5}.
\frac{12\times 5}{5\times 9}
Multiply \frac{12}{5} times \frac{5}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{9}
Cancel out 5 in both numerator and denominator.
\frac{4}{3}
Reduce the fraction \frac{12}{9} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}