Verify
false
Share
Copied to clipboard
\frac{2+1}{2}+\frac{3}{6}-\frac{4}{6}=\frac{5\times 6+2}{6}\text{ and }\frac{5\times 6+2}{6}=\frac{5\times 3+1}{3}
Multiply 1 and 2 to get 2.
\frac{3}{2}+\frac{3}{6}-\frac{4}{6}=\frac{5\times 6+2}{6}\text{ and }\frac{5\times 6+2}{6}=\frac{5\times 3+1}{3}
Add 2 and 1 to get 3.
\frac{3}{2}+\frac{1}{2}-\frac{4}{6}=\frac{5\times 6+2}{6}\text{ and }\frac{5\times 6+2}{6}=\frac{5\times 3+1}{3}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{3+1}{2}-\frac{4}{6}=\frac{5\times 6+2}{6}\text{ and }\frac{5\times 6+2}{6}=\frac{5\times 3+1}{3}
Since \frac{3}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{4}{2}-\frac{4}{6}=\frac{5\times 6+2}{6}\text{ and }\frac{5\times 6+2}{6}=\frac{5\times 3+1}{3}
Add 3 and 1 to get 4.
2-\frac{4}{6}=\frac{5\times 6+2}{6}\text{ and }\frac{5\times 6+2}{6}=\frac{5\times 3+1}{3}
Divide 4 by 2 to get 2.
2-\frac{2}{3}=\frac{5\times 6+2}{6}\text{ and }\frac{5\times 6+2}{6}=\frac{5\times 3+1}{3}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\frac{6}{3}-\frac{2}{3}=\frac{5\times 6+2}{6}\text{ and }\frac{5\times 6+2}{6}=\frac{5\times 3+1}{3}
Convert 2 to fraction \frac{6}{3}.
\frac{6-2}{3}=\frac{5\times 6+2}{6}\text{ and }\frac{5\times 6+2}{6}=\frac{5\times 3+1}{3}
Since \frac{6}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{4}{3}=\frac{5\times 6+2}{6}\text{ and }\frac{5\times 6+2}{6}=\frac{5\times 3+1}{3}
Subtract 2 from 6 to get 4.
\frac{4}{3}=\frac{30+2}{6}\text{ and }\frac{5\times 6+2}{6}=\frac{5\times 3+1}{3}
Multiply 5 and 6 to get 30.
\frac{4}{3}=\frac{32}{6}\text{ and }\frac{5\times 6+2}{6}=\frac{5\times 3+1}{3}
Add 30 and 2 to get 32.
\frac{4}{3}=\frac{16}{3}\text{ and }\frac{5\times 6+2}{6}=\frac{5\times 3+1}{3}
Reduce the fraction \frac{32}{6} to lowest terms by extracting and canceling out 2.
\text{false}\text{ and }\frac{5\times 6+2}{6}=\frac{5\times 3+1}{3}
Compare \frac{4}{3} and \frac{16}{3}.
\text{false}\text{ and }\frac{30+2}{6}=\frac{5\times 3+1}{3}
Multiply 5 and 6 to get 30.
\text{false}\text{ and }\frac{32}{6}=\frac{5\times 3+1}{3}
Add 30 and 2 to get 32.
\text{false}\text{ and }\frac{16}{3}=\frac{5\times 3+1}{3}
Reduce the fraction \frac{32}{6} to lowest terms by extracting and canceling out 2.
\text{false}\text{ and }\frac{16}{3}=\frac{15+1}{3}
Multiply 5 and 3 to get 15.
\text{false}\text{ and }\frac{16}{3}=\frac{16}{3}
Add 15 and 1 to get 16.
\text{false}\text{ and }\text{true}
Compare \frac{16}{3} and \frac{16}{3}.
\text{false}
The conjunction of \text{false} and \text{true} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}