Evaluate
\frac{6}{31}\approx 0.193548387
Factor
\frac{2 \cdot 3}{31} = 0.1935483870967742
Share
Copied to clipboard
\frac{1}{\frac{14}{21}+\frac{4}{21}+\frac{8}{15\times 7}+\frac{16}{31\times 15}+\frac{32}{63\times 31}}\times \frac{4}{21}
Least common multiple of 3 and 21 is 21. Convert \frac{2}{3} and \frac{4}{21} to fractions with denominator 21.
\frac{1}{\frac{14+4}{21}+\frac{8}{15\times 7}+\frac{16}{31\times 15}+\frac{32}{63\times 31}}\times \frac{4}{21}
Since \frac{14}{21} and \frac{4}{21} have the same denominator, add them by adding their numerators.
\frac{1}{\frac{18}{21}+\frac{8}{15\times 7}+\frac{16}{31\times 15}+\frac{32}{63\times 31}}\times \frac{4}{21}
Add 14 and 4 to get 18.
\frac{1}{\frac{6}{7}+\frac{8}{15\times 7}+\frac{16}{31\times 15}+\frac{32}{63\times 31}}\times \frac{4}{21}
Reduce the fraction \frac{18}{21} to lowest terms by extracting and canceling out 3.
\frac{1}{\frac{6}{7}+\frac{8}{105}+\frac{16}{31\times 15}+\frac{32}{63\times 31}}\times \frac{4}{21}
Multiply 15 and 7 to get 105.
\frac{1}{\frac{90}{105}+\frac{8}{105}+\frac{16}{31\times 15}+\frac{32}{63\times 31}}\times \frac{4}{21}
Least common multiple of 7 and 105 is 105. Convert \frac{6}{7} and \frac{8}{105} to fractions with denominator 105.
\frac{1}{\frac{90+8}{105}+\frac{16}{31\times 15}+\frac{32}{63\times 31}}\times \frac{4}{21}
Since \frac{90}{105} and \frac{8}{105} have the same denominator, add them by adding their numerators.
\frac{1}{\frac{98}{105}+\frac{16}{31\times 15}+\frac{32}{63\times 31}}\times \frac{4}{21}
Add 90 and 8 to get 98.
\frac{1}{\frac{14}{15}+\frac{16}{31\times 15}+\frac{32}{63\times 31}}\times \frac{4}{21}
Reduce the fraction \frac{98}{105} to lowest terms by extracting and canceling out 7.
\frac{1}{\frac{14}{15}+\frac{16}{465}+\frac{32}{63\times 31}}\times \frac{4}{21}
Multiply 31 and 15 to get 465.
\frac{1}{\frac{434}{465}+\frac{16}{465}+\frac{32}{63\times 31}}\times \frac{4}{21}
Least common multiple of 15 and 465 is 465. Convert \frac{14}{15} and \frac{16}{465} to fractions with denominator 465.
\frac{1}{\frac{434+16}{465}+\frac{32}{63\times 31}}\times \frac{4}{21}
Since \frac{434}{465} and \frac{16}{465} have the same denominator, add them by adding their numerators.
\frac{1}{\frac{450}{465}+\frac{32}{63\times 31}}\times \frac{4}{21}
Add 434 and 16 to get 450.
\frac{1}{\frac{30}{31}+\frac{32}{63\times 31}}\times \frac{4}{21}
Reduce the fraction \frac{450}{465} to lowest terms by extracting and canceling out 15.
\frac{1}{\frac{30}{31}+\frac{32}{1953}}\times \frac{4}{21}
Multiply 63 and 31 to get 1953.
\frac{1}{\frac{1890}{1953}+\frac{32}{1953}}\times \frac{4}{21}
Least common multiple of 31 and 1953 is 1953. Convert \frac{30}{31} and \frac{32}{1953} to fractions with denominator 1953.
\frac{1}{\frac{1890+32}{1953}}\times \frac{4}{21}
Since \frac{1890}{1953} and \frac{32}{1953} have the same denominator, add them by adding their numerators.
\frac{1}{\frac{1922}{1953}}\times \frac{4}{21}
Add 1890 and 32 to get 1922.
\frac{1}{\frac{62}{63}}\times \frac{4}{21}
Reduce the fraction \frac{1922}{1953} to lowest terms by extracting and canceling out 31.
1\times \frac{63}{62}\times \frac{4}{21}
Divide 1 by \frac{62}{63} by multiplying 1 by the reciprocal of \frac{62}{63}.
\frac{63}{62}\times \frac{4}{21}
Multiply 1 and \frac{63}{62} to get \frac{63}{62}.
\frac{63\times 4}{62\times 21}
Multiply \frac{63}{62} times \frac{4}{21} by multiplying numerator times numerator and denominator times denominator.
\frac{252}{1302}
Do the multiplications in the fraction \frac{63\times 4}{62\times 21}.
\frac{6}{31}
Reduce the fraction \frac{252}{1302} to lowest terms by extracting and canceling out 42.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}