Skip to main content
Solve for d
Tick mark Image

Similar Problems from Web Search

Share

1-7d^{2}+48=0
Calculate 1 to the power of 3 and get 1.
49-7d^{2}=0
Add 1 and 48 to get 49.
-7d^{2}=-49
Subtract 49 from both sides. Anything subtracted from zero gives its negation.
d^{2}=\frac{-49}{-7}
Divide both sides by -7.
d^{2}=7
Divide -49 by -7 to get 7.
d=\sqrt{7} d=-\sqrt{7}
Take the square root of both sides of the equation.
1-7d^{2}+48=0
Calculate 1 to the power of 3 and get 1.
49-7d^{2}=0
Add 1 and 48 to get 49.
-7d^{2}+49=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
d=\frac{0±\sqrt{0^{2}-4\left(-7\right)\times 49}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, 0 for b, and 49 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{0±\sqrt{-4\left(-7\right)\times 49}}{2\left(-7\right)}
Square 0.
d=\frac{0±\sqrt{28\times 49}}{2\left(-7\right)}
Multiply -4 times -7.
d=\frac{0±\sqrt{1372}}{2\left(-7\right)}
Multiply 28 times 49.
d=\frac{0±14\sqrt{7}}{2\left(-7\right)}
Take the square root of 1372.
d=\frac{0±14\sqrt{7}}{-14}
Multiply 2 times -7.
d=-\sqrt{7}
Now solve the equation d=\frac{0±14\sqrt{7}}{-14} when ± is plus.
d=\sqrt{7}
Now solve the equation d=\frac{0±14\sqrt{7}}{-14} when ± is minus.
d=-\sqrt{7} d=\sqrt{7}
The equation is now solved.