Evaluate
\frac{\pi }{3}-3\approx -1.952802449
Factor
\frac{\pi - 9}{3} = -1.9528024488034024
Share
Copied to clipboard
1\times \frac{\pi }{3}+\left(\cos(\frac{3\pi }{2})\right)^{4}-\left(\tan(\frac{\pi }{3})\right)^{2}
Calculate 1 to the power of 2 and get 1.
\frac{\pi }{3}+\left(\cos(\frac{3\pi }{2})\right)^{4}-\left(\tan(\frac{\pi }{3})\right)^{2}
Express 1\times \frac{\pi }{3} as a single fraction.
\frac{\pi }{3}+0^{4}-\left(\tan(\frac{\pi }{3})\right)^{2}
Get the value of \cos(\frac{3\pi }{2}) from trigonometric values table.
\frac{\pi }{3}+0-\left(\tan(\frac{\pi }{3})\right)^{2}
Calculate 0 to the power of 4 and get 0.
\frac{\pi }{3}-\left(\tan(\frac{\pi }{3})\right)^{2}
Anything plus zero gives itself.
\frac{\pi }{3}-\left(\sqrt{3}\right)^{2}
Get the value of \tan(\frac{\pi }{3}) from trigonometric values table.
\frac{\pi }{3}-3
The square of \sqrt{3} is 3.
\frac{\pi }{3}-\frac{3\times 3}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{3}{3}.
\frac{\pi -3\times 3}{3}
Since \frac{\pi }{3} and \frac{3\times 3}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\pi -9}{3}
Do the multiplications in \pi -3\times 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}