Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

1+\left(a+\frac{3}{2}\right)^{2}+1+\left(2-a\right)^{2}=\frac{49}{4}
Calculate 1 to the power of 2 and get 1.
1+a^{2}+3a+\frac{9}{4}+1+\left(2-a\right)^{2}=\frac{49}{4}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+\frac{3}{2}\right)^{2}.
\frac{13}{4}+a^{2}+3a+1+\left(2-a\right)^{2}=\frac{49}{4}
Add 1 and \frac{9}{4} to get \frac{13}{4}.
\frac{17}{4}+a^{2}+3a+\left(2-a\right)^{2}=\frac{49}{4}
Add \frac{13}{4} and 1 to get \frac{17}{4}.
\frac{17}{4}+a^{2}+3a+4-4a+a^{2}=\frac{49}{4}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-a\right)^{2}.
\frac{33}{4}+a^{2}+3a-4a+a^{2}=\frac{49}{4}
Add \frac{17}{4} and 4 to get \frac{33}{4}.
\frac{33}{4}+a^{2}-a+a^{2}=\frac{49}{4}
Combine 3a and -4a to get -a.
\frac{33}{4}+2a^{2}-a=\frac{49}{4}
Combine a^{2} and a^{2} to get 2a^{2}.
\frac{33}{4}+2a^{2}-a-\frac{49}{4}=0
Subtract \frac{49}{4} from both sides.
-4+2a^{2}-a=0
Subtract \frac{49}{4} from \frac{33}{4} to get -4.
2a^{2}-a-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-4\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -1 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-1\right)±\sqrt{1-8\left(-4\right)}}{2\times 2}
Multiply -4 times 2.
a=\frac{-\left(-1\right)±\sqrt{1+32}}{2\times 2}
Multiply -8 times -4.
a=\frac{-\left(-1\right)±\sqrt{33}}{2\times 2}
Add 1 to 32.
a=\frac{1±\sqrt{33}}{2\times 2}
The opposite of -1 is 1.
a=\frac{1±\sqrt{33}}{4}
Multiply 2 times 2.
a=\frac{\sqrt{33}+1}{4}
Now solve the equation a=\frac{1±\sqrt{33}}{4} when ± is plus. Add 1 to \sqrt{33}.
a=\frac{1-\sqrt{33}}{4}
Now solve the equation a=\frac{1±\sqrt{33}}{4} when ± is minus. Subtract \sqrt{33} from 1.
a=\frac{\sqrt{33}+1}{4} a=\frac{1-\sqrt{33}}{4}
The equation is now solved.
1+\left(a+\frac{3}{2}\right)^{2}+1+\left(2-a\right)^{2}=\frac{49}{4}
Calculate 1 to the power of 2 and get 1.
1+a^{2}+3a+\frac{9}{4}+1+\left(2-a\right)^{2}=\frac{49}{4}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+\frac{3}{2}\right)^{2}.
\frac{13}{4}+a^{2}+3a+1+\left(2-a\right)^{2}=\frac{49}{4}
Add 1 and \frac{9}{4} to get \frac{13}{4}.
\frac{17}{4}+a^{2}+3a+\left(2-a\right)^{2}=\frac{49}{4}
Add \frac{13}{4} and 1 to get \frac{17}{4}.
\frac{17}{4}+a^{2}+3a+4-4a+a^{2}=\frac{49}{4}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-a\right)^{2}.
\frac{33}{4}+a^{2}+3a-4a+a^{2}=\frac{49}{4}
Add \frac{17}{4} and 4 to get \frac{33}{4}.
\frac{33}{4}+a^{2}-a+a^{2}=\frac{49}{4}
Combine 3a and -4a to get -a.
\frac{33}{4}+2a^{2}-a=\frac{49}{4}
Combine a^{2} and a^{2} to get 2a^{2}.
2a^{2}-a=\frac{49}{4}-\frac{33}{4}
Subtract \frac{33}{4} from both sides.
2a^{2}-a=4
Subtract \frac{33}{4} from \frac{49}{4} to get 4.
\frac{2a^{2}-a}{2}=\frac{4}{2}
Divide both sides by 2.
a^{2}-\frac{1}{2}a=\frac{4}{2}
Dividing by 2 undoes the multiplication by 2.
a^{2}-\frac{1}{2}a=2
Divide 4 by 2.
a^{2}-\frac{1}{2}a+\left(-\frac{1}{4}\right)^{2}=2+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{1}{2}a+\frac{1}{16}=2+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{1}{2}a+\frac{1}{16}=\frac{33}{16}
Add 2 to \frac{1}{16}.
\left(a-\frac{1}{4}\right)^{2}=\frac{33}{16}
Factor a^{2}-\frac{1}{2}a+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{1}{4}\right)^{2}}=\sqrt{\frac{33}{16}}
Take the square root of both sides of the equation.
a-\frac{1}{4}=\frac{\sqrt{33}}{4} a-\frac{1}{4}=-\frac{\sqrt{33}}{4}
Simplify.
a=\frac{\sqrt{33}+1}{4} a=\frac{1-\sqrt{33}}{4}
Add \frac{1}{4} to both sides of the equation.