Solve for A
A=\frac{1}{\left(x-1\right)^{3}}
x\neq 1
Solve for x
x=1+\frac{1}{\sqrt[3]{A}}
A\neq 0
Graph
Share
Copied to clipboard
1=A\left(x^{3}-3x^{2}+3x-1\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1\right)^{3}.
1=Ax^{3}-3Ax^{2}+3Ax-A
Use the distributive property to multiply A by x^{3}-3x^{2}+3x-1.
Ax^{3}-3Ax^{2}+3Ax-A=1
Swap sides so that all variable terms are on the left hand side.
\left(x^{3}-3x^{2}+3x-1\right)A=1
Combine all terms containing A.
\frac{\left(x^{3}-3x^{2}+3x-1\right)A}{x^{3}-3x^{2}+3x-1}=\frac{1}{x^{3}-3x^{2}+3x-1}
Divide both sides by x^{3}-3x^{2}+3x-1.
A=\frac{1}{x^{3}-3x^{2}+3x-1}
Dividing by x^{3}-3x^{2}+3x-1 undoes the multiplication by x^{3}-3x^{2}+3x-1.
A=\frac{1}{\left(x-1\right)^{3}}
Divide 1 by x^{3}-3x^{2}+3x-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}