Solve for x
x=\frac{1}{7}\approx 0.142857143
x=-1
Graph
Share
Copied to clipboard
7x^{2}+6x=1
Swap sides so that all variable terms are on the left hand side.
7x^{2}+6x-1=0
Subtract 1 from both sides.
a+b=6 ab=7\left(-1\right)=-7
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 7x^{2}+ax+bx-1. To find a and b, set up a system to be solved.
a=-1 b=7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. The only such pair is the system solution.
\left(7x^{2}-x\right)+\left(7x-1\right)
Rewrite 7x^{2}+6x-1 as \left(7x^{2}-x\right)+\left(7x-1\right).
x\left(7x-1\right)+7x-1
Factor out x in 7x^{2}-x.
\left(7x-1\right)\left(x+1\right)
Factor out common term 7x-1 by using distributive property.
x=\frac{1}{7} x=-1
To find equation solutions, solve 7x-1=0 and x+1=0.
7x^{2}+6x=1
Swap sides so that all variable terms are on the left hand side.
7x^{2}+6x-1=0
Subtract 1 from both sides.
x=\frac{-6±\sqrt{6^{2}-4\times 7\left(-1\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 6 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 7\left(-1\right)}}{2\times 7}
Square 6.
x=\frac{-6±\sqrt{36-28\left(-1\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-6±\sqrt{36+28}}{2\times 7}
Multiply -28 times -1.
x=\frac{-6±\sqrt{64}}{2\times 7}
Add 36 to 28.
x=\frac{-6±8}{2\times 7}
Take the square root of 64.
x=\frac{-6±8}{14}
Multiply 2 times 7.
x=\frac{2}{14}
Now solve the equation x=\frac{-6±8}{14} when ± is plus. Add -6 to 8.
x=\frac{1}{7}
Reduce the fraction \frac{2}{14} to lowest terms by extracting and canceling out 2.
x=-\frac{14}{14}
Now solve the equation x=\frac{-6±8}{14} when ± is minus. Subtract 8 from -6.
x=-1
Divide -14 by 14.
x=\frac{1}{7} x=-1
The equation is now solved.
7x^{2}+6x=1
Swap sides so that all variable terms are on the left hand side.
\frac{7x^{2}+6x}{7}=\frac{1}{7}
Divide both sides by 7.
x^{2}+\frac{6}{7}x=\frac{1}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}+\frac{6}{7}x+\left(\frac{3}{7}\right)^{2}=\frac{1}{7}+\left(\frac{3}{7}\right)^{2}
Divide \frac{6}{7}, the coefficient of the x term, by 2 to get \frac{3}{7}. Then add the square of \frac{3}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{6}{7}x+\frac{9}{49}=\frac{1}{7}+\frac{9}{49}
Square \frac{3}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{6}{7}x+\frac{9}{49}=\frac{16}{49}
Add \frac{1}{7} to \frac{9}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{7}\right)^{2}=\frac{16}{49}
Factor x^{2}+\frac{6}{7}x+\frac{9}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{7}\right)^{2}}=\sqrt{\frac{16}{49}}
Take the square root of both sides of the equation.
x+\frac{3}{7}=\frac{4}{7} x+\frac{3}{7}=-\frac{4}{7}
Simplify.
x=\frac{1}{7} x=-1
Subtract \frac{3}{7} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}