Solve for w
w=28
w=-12
Share
Copied to clipboard
-4+|2-\frac{1}{4}w|=1
Swap sides so that all variable terms are on the left hand side.
|2-\frac{1}{4}w|=1+4
Add 4 to both sides.
|2-\frac{1}{4}w|=5
Add 1 and 4 to get 5.
|-\frac{1}{4}w+2|=5
Combine like terms and use the properties of equality to get the variable on one side of the equal sign and the numbers on the other side. Remember to follow the order of operations.
-\frac{1}{4}w+2=5 -\frac{1}{4}w+2=-5
Use the definition of absolute value.
-\frac{1}{4}w=3 -\frac{1}{4}w=-7
Subtract 2 from both sides of the equation.
w=-12 w=28
Multiply both sides by -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}