Skip to main content
Solve for u
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{2}+\frac{1}{3}u^{2}=1
Swap sides so that all variable terms are on the left hand side.
\frac{1}{3}u^{2}=1-\frac{1}{2}
Subtract \frac{1}{2} from both sides.
\frac{1}{3}u^{2}=\frac{1}{2}
Subtract \frac{1}{2} from 1 to get \frac{1}{2}.
u^{2}=\frac{1}{2}\times 3
Multiply both sides by 3, the reciprocal of \frac{1}{3}.
u^{2}=\frac{3}{2}
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
u=\frac{\sqrt{6}}{2} u=-\frac{\sqrt{6}}{2}
Take the square root of both sides of the equation.
\frac{1}{2}+\frac{1}{3}u^{2}=1
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}+\frac{1}{3}u^{2}-1=0
Subtract 1 from both sides.
-\frac{1}{2}+\frac{1}{3}u^{2}=0
Subtract 1 from \frac{1}{2} to get -\frac{1}{2}.
\frac{1}{3}u^{2}-\frac{1}{2}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
u=\frac{0±\sqrt{0^{2}-4\times \frac{1}{3}\left(-\frac{1}{2}\right)}}{2\times \frac{1}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{3} for a, 0 for b, and -\frac{1}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
u=\frac{0±\sqrt{-4\times \frac{1}{3}\left(-\frac{1}{2}\right)}}{2\times \frac{1}{3}}
Square 0.
u=\frac{0±\sqrt{-\frac{4}{3}\left(-\frac{1}{2}\right)}}{2\times \frac{1}{3}}
Multiply -4 times \frac{1}{3}.
u=\frac{0±\sqrt{\frac{2}{3}}}{2\times \frac{1}{3}}
Multiply -\frac{4}{3} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
u=\frac{0±\frac{\sqrt{6}}{3}}{2\times \frac{1}{3}}
Take the square root of \frac{2}{3}.
u=\frac{0±\frac{\sqrt{6}}{3}}{\frac{2}{3}}
Multiply 2 times \frac{1}{3}.
u=\frac{\sqrt{6}}{2}
Now solve the equation u=\frac{0±\frac{\sqrt{6}}{3}}{\frac{2}{3}} when ± is plus.
u=-\frac{\sqrt{6}}{2}
Now solve the equation u=\frac{0±\frac{\sqrt{6}}{3}}{\frac{2}{3}} when ± is minus.
u=\frac{\sqrt{6}}{2} u=-\frac{\sqrt{6}}{2}
The equation is now solved.