Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{160}x^{2}+4=1
Swap sides so that all variable terms are on the left hand side.
\frac{1}{160}x^{2}=1-4
Subtract 4 from both sides.
\frac{1}{160}x^{2}=-3
Subtract 4 from 1 to get -3.
x^{2}=-3\times 160
Multiply both sides by 160, the reciprocal of \frac{1}{160}.
x^{2}=-480
Multiply -3 and 160 to get -480.
x=4\sqrt{30}i x=-4\sqrt{30}i
The equation is now solved.
\frac{1}{160}x^{2}+4=1
Swap sides so that all variable terms are on the left hand side.
\frac{1}{160}x^{2}+4-1=0
Subtract 1 from both sides.
\frac{1}{160}x^{2}+3=0
Subtract 1 from 4 to get 3.
x=\frac{0±\sqrt{0^{2}-4\times \frac{1}{160}\times 3}}{2\times \frac{1}{160}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{160} for a, 0 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{1}{160}\times 3}}{2\times \frac{1}{160}}
Square 0.
x=\frac{0±\sqrt{-\frac{1}{40}\times 3}}{2\times \frac{1}{160}}
Multiply -4 times \frac{1}{160}.
x=\frac{0±\sqrt{-\frac{3}{40}}}{2\times \frac{1}{160}}
Multiply -\frac{1}{40} times 3.
x=\frac{0±\frac{\sqrt{30}i}{20}}{2\times \frac{1}{160}}
Take the square root of -\frac{3}{40}.
x=\frac{0±\frac{\sqrt{30}i}{20}}{\frac{1}{80}}
Multiply 2 times \frac{1}{160}.
x=4\sqrt{30}i
Now solve the equation x=\frac{0±\frac{\sqrt{30}i}{20}}{\frac{1}{80}} when ± is plus.
x=-4\sqrt{30}i
Now solve the equation x=\frac{0±\frac{\sqrt{30}i}{20}}{\frac{1}{80}} when ± is minus.
x=4\sqrt{30}i x=-4\sqrt{30}i
The equation is now solved.