Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

25+x^{2}-20x=0
Add 1 and 24 to get 25.
x^{2}-20x+25=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 25}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -20 for b, and 25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 25}}{2}
Square -20.
x=\frac{-\left(-20\right)±\sqrt{400-100}}{2}
Multiply -4 times 25.
x=\frac{-\left(-20\right)±\sqrt{300}}{2}
Add 400 to -100.
x=\frac{-\left(-20\right)±10\sqrt{3}}{2}
Take the square root of 300.
x=\frac{20±10\sqrt{3}}{2}
The opposite of -20 is 20.
x=\frac{10\sqrt{3}+20}{2}
Now solve the equation x=\frac{20±10\sqrt{3}}{2} when ± is plus. Add 20 to 10\sqrt{3}.
x=5\sqrt{3}+10
Divide 20+10\sqrt{3} by 2.
x=\frac{20-10\sqrt{3}}{2}
Now solve the equation x=\frac{20±10\sqrt{3}}{2} when ± is minus. Subtract 10\sqrt{3} from 20.
x=10-5\sqrt{3}
Divide 20-10\sqrt{3} by 2.
x=5\sqrt{3}+10 x=10-5\sqrt{3}
The equation is now solved.
25+x^{2}-20x=0
Add 1 and 24 to get 25.
x^{2}-20x=-25
Subtract 25 from both sides. Anything subtracted from zero gives its negation.
x^{2}-20x+\left(-10\right)^{2}=-25+\left(-10\right)^{2}
Divide -20, the coefficient of the x term, by 2 to get -10. Then add the square of -10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-20x+100=-25+100
Square -10.
x^{2}-20x+100=75
Add -25 to 100.
\left(x-10\right)^{2}=75
Factor x^{2}-20x+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-10\right)^{2}}=\sqrt{75}
Take the square root of both sides of the equation.
x-10=5\sqrt{3} x-10=-5\sqrt{3}
Simplify.
x=5\sqrt{3}+10 x=10-5\sqrt{3}
Add 10 to both sides of the equation.