Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

1+a^{2}=\left(\sqrt{2}\right)^{2}a^{2}-2\sqrt{2}a\sqrt{2}+\left(\sqrt{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2}a-\sqrt{2}\right)^{2}.
1+a^{2}=\left(\sqrt{2}\right)^{2}a^{2}-2\times 2a+\left(\sqrt{2}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
1+a^{2}=2a^{2}-2\times 2a+\left(\sqrt{2}\right)^{2}
The square of \sqrt{2} is 2.
1+a^{2}=2a^{2}-4a+\left(\sqrt{2}\right)^{2}
Multiply -2 and 2 to get -4.
1+a^{2}=2a^{2}-4a+2
The square of \sqrt{2} is 2.
1+a^{2}-2a^{2}=-4a+2
Subtract 2a^{2} from both sides.
1-a^{2}=-4a+2
Combine a^{2} and -2a^{2} to get -a^{2}.
1-a^{2}+4a=2
Add 4a to both sides.
1-a^{2}+4a-2=0
Subtract 2 from both sides.
-1-a^{2}+4a=0
Subtract 2 from 1 to get -1.
-a^{2}+4a-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 4 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-4±\sqrt{16-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Square 4.
a=\frac{-4±\sqrt{16+4\left(-1\right)}}{2\left(-1\right)}
Multiply -4 times -1.
a=\frac{-4±\sqrt{16-4}}{2\left(-1\right)}
Multiply 4 times -1.
a=\frac{-4±\sqrt{12}}{2\left(-1\right)}
Add 16 to -4.
a=\frac{-4±2\sqrt{3}}{2\left(-1\right)}
Take the square root of 12.
a=\frac{-4±2\sqrt{3}}{-2}
Multiply 2 times -1.
a=\frac{2\sqrt{3}-4}{-2}
Now solve the equation a=\frac{-4±2\sqrt{3}}{-2} when ± is plus. Add -4 to 2\sqrt{3}.
a=2-\sqrt{3}
Divide -4+2\sqrt{3} by -2.
a=\frac{-2\sqrt{3}-4}{-2}
Now solve the equation a=\frac{-4±2\sqrt{3}}{-2} when ± is minus. Subtract 2\sqrt{3} from -4.
a=\sqrt{3}+2
Divide -4-2\sqrt{3} by -2.
a=2-\sqrt{3} a=\sqrt{3}+2
The equation is now solved.
1+a^{2}=\left(\sqrt{2}\right)^{2}a^{2}-2\sqrt{2}a\sqrt{2}+\left(\sqrt{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2}a-\sqrt{2}\right)^{2}.
1+a^{2}=\left(\sqrt{2}\right)^{2}a^{2}-2\times 2a+\left(\sqrt{2}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
1+a^{2}=2a^{2}-2\times 2a+\left(\sqrt{2}\right)^{2}
The square of \sqrt{2} is 2.
1+a^{2}=2a^{2}-4a+\left(\sqrt{2}\right)^{2}
Multiply -2 and 2 to get -4.
1+a^{2}=2a^{2}-4a+2
The square of \sqrt{2} is 2.
1+a^{2}-2a^{2}=-4a+2
Subtract 2a^{2} from both sides.
1-a^{2}=-4a+2
Combine a^{2} and -2a^{2} to get -a^{2}.
1-a^{2}+4a=2
Add 4a to both sides.
-a^{2}+4a=2-1
Subtract 1 from both sides.
-a^{2}+4a=1
Subtract 1 from 2 to get 1.
\frac{-a^{2}+4a}{-1}=\frac{1}{-1}
Divide both sides by -1.
a^{2}+\frac{4}{-1}a=\frac{1}{-1}
Dividing by -1 undoes the multiplication by -1.
a^{2}-4a=\frac{1}{-1}
Divide 4 by -1.
a^{2}-4a=-1
Divide 1 by -1.
a^{2}-4a+\left(-2\right)^{2}=-1+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-4a+4=-1+4
Square -2.
a^{2}-4a+4=3
Add -1 to 4.
\left(a-2\right)^{2}=3
Factor a^{2}-4a+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-2\right)^{2}}=\sqrt{3}
Take the square root of both sides of the equation.
a-2=\sqrt{3} a-2=-\sqrt{3}
Simplify.
a=\sqrt{3}+2 a=2-\sqrt{3}
Add 2 to both sides of the equation.