Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(1+\sqrt{y}\right)^{2}=\left(\sqrt{y+13}\right)^{2}
Square both sides of the equation.
1+2\sqrt{y}+\left(\sqrt{y}\right)^{2}=\left(\sqrt{y+13}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{y}\right)^{2}.
1+2\sqrt{y}+y=\left(\sqrt{y+13}\right)^{2}
Calculate \sqrt{y} to the power of 2 and get y.
1+2\sqrt{y}+y=y+13
Calculate \sqrt{y+13} to the power of 2 and get y+13.
1+2\sqrt{y}+y-y=13
Subtract y from both sides.
1+2\sqrt{y}=13
Combine y and -y to get 0.
2\sqrt{y}=13-1
Subtract 1 from both sides.
2\sqrt{y}=12
Subtract 1 from 13 to get 12.
\sqrt{y}=\frac{12}{2}
Divide both sides by 2.
\sqrt{y}=6
Divide 12 by 2 to get 6.
y=36
Square both sides of the equation.
1+\sqrt{36}=\sqrt{36+13}
Substitute 36 for y in the equation 1+\sqrt{y}=\sqrt{y+13}.
7=7
Simplify. The value y=36 satisfies the equation.
y=36
Equation \sqrt{y}+1=\sqrt{y+13} has a unique solution.