Solve for y
y=36
Graph
Share
Copied to clipboard
\left(1+\sqrt{y}\right)^{2}=\left(\sqrt{y+13}\right)^{2}
Square both sides of the equation.
1+2\sqrt{y}+\left(\sqrt{y}\right)^{2}=\left(\sqrt{y+13}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{y}\right)^{2}.
1+2\sqrt{y}+y=\left(\sqrt{y+13}\right)^{2}
Calculate \sqrt{y} to the power of 2 and get y.
1+2\sqrt{y}+y=y+13
Calculate \sqrt{y+13} to the power of 2 and get y+13.
1+2\sqrt{y}+y-y=13
Subtract y from both sides.
1+2\sqrt{y}=13
Combine y and -y to get 0.
2\sqrt{y}=13-1
Subtract 1 from both sides.
2\sqrt{y}=12
Subtract 1 from 13 to get 12.
\sqrt{y}=\frac{12}{2}
Divide both sides by 2.
\sqrt{y}=6
Divide 12 by 2 to get 6.
y=36
Square both sides of the equation.
1+\sqrt{36}=\sqrt{36+13}
Substitute 36 for y in the equation 1+\sqrt{y}=\sqrt{y+13}.
7=7
Simplify. The value y=36 satisfies the equation.
y=36
Equation \sqrt{y}+1=\sqrt{y+13} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}