Solve for x
x=-6
Graph
Share
Copied to clipboard
\sqrt{4-2x}=x+11-1
Subtract 1 from both sides of the equation.
\sqrt{4-2x}=x+10
Subtract 1 from 11 to get 10.
\left(\sqrt{4-2x}\right)^{2}=\left(x+10\right)^{2}
Square both sides of the equation.
4-2x=\left(x+10\right)^{2}
Calculate \sqrt{4-2x} to the power of 2 and get 4-2x.
4-2x=x^{2}+20x+100
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+10\right)^{2}.
4-2x-x^{2}=20x+100
Subtract x^{2} from both sides.
4-2x-x^{2}-20x=100
Subtract 20x from both sides.
4-22x-x^{2}=100
Combine -2x and -20x to get -22x.
4-22x-x^{2}-100=0
Subtract 100 from both sides.
-96-22x-x^{2}=0
Subtract 100 from 4 to get -96.
-x^{2}-22x-96=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-22 ab=-\left(-96\right)=96
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-96. To find a and b, set up a system to be solved.
-1,-96 -2,-48 -3,-32 -4,-24 -6,-16 -8,-12
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 96.
-1-96=-97 -2-48=-50 -3-32=-35 -4-24=-28 -6-16=-22 -8-12=-20
Calculate the sum for each pair.
a=-6 b=-16
The solution is the pair that gives sum -22.
\left(-x^{2}-6x\right)+\left(-16x-96\right)
Rewrite -x^{2}-22x-96 as \left(-x^{2}-6x\right)+\left(-16x-96\right).
x\left(-x-6\right)+16\left(-x-6\right)
Factor out x in the first and 16 in the second group.
\left(-x-6\right)\left(x+16\right)
Factor out common term -x-6 by using distributive property.
x=-6 x=-16
To find equation solutions, solve -x-6=0 and x+16=0.
1+\sqrt{4-2\left(-6\right)}=-6+11
Substitute -6 for x in the equation 1+\sqrt{4-2x}=x+11.
5=5
Simplify. The value x=-6 satisfies the equation.
1+\sqrt{4-2\left(-16\right)}=-16+11
Substitute -16 for x in the equation 1+\sqrt{4-2x}=x+11.
7=-5
Simplify. The value x=-16 does not satisfy the equation because the left and the right hand side have opposite signs.
x=-6
Equation \sqrt{4-2x}=x+10 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}