Evaluate
\frac{131}{60}\approx 2.183333333
Factor
\frac{131}{2 ^ {2} \cdot 3 \cdot 5} = 2\frac{11}{60} = 2.183333333333333
Share
Copied to clipboard
\frac{4}{4}+\frac{3}{4}-\frac{2}{5}+\frac{7}{3}-\frac{12}{8}
Convert 1 to fraction \frac{4}{4}.
\frac{4+3}{4}-\frac{2}{5}+\frac{7}{3}-\frac{12}{8}
Since \frac{4}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
\frac{7}{4}-\frac{2}{5}+\frac{7}{3}-\frac{12}{8}
Add 4 and 3 to get 7.
\frac{35}{20}-\frac{8}{20}+\frac{7}{3}-\frac{12}{8}
Least common multiple of 4 and 5 is 20. Convert \frac{7}{4} and \frac{2}{5} to fractions with denominator 20.
\frac{35-8}{20}+\frac{7}{3}-\frac{12}{8}
Since \frac{35}{20} and \frac{8}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{27}{20}+\frac{7}{3}-\frac{12}{8}
Subtract 8 from 35 to get 27.
\frac{81}{60}+\frac{140}{60}-\frac{12}{8}
Least common multiple of 20 and 3 is 60. Convert \frac{27}{20} and \frac{7}{3} to fractions with denominator 60.
\frac{81+140}{60}-\frac{12}{8}
Since \frac{81}{60} and \frac{140}{60} have the same denominator, add them by adding their numerators.
\frac{221}{60}-\frac{12}{8}
Add 81 and 140 to get 221.
\frac{221}{60}-\frac{3}{2}
Reduce the fraction \frac{12}{8} to lowest terms by extracting and canceling out 4.
\frac{221}{60}-\frac{90}{60}
Least common multiple of 60 and 2 is 60. Convert \frac{221}{60} and \frac{3}{2} to fractions with denominator 60.
\frac{221-90}{60}
Since \frac{221}{60} and \frac{90}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{131}{60}
Subtract 90 from 221 to get 131.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}