Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

1+\frac{3\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator of \frac{3}{1+i} by the complex conjugate of the denominator, 1-i.
1+\frac{3\left(1-i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
1+\frac{3\left(1-i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
1+\frac{3\times 1+3\left(-i\right)}{2}
Multiply 3 times 1-i.
1+\frac{3-3i}{2}
Do the multiplications in 3\times 1+3\left(-i\right).
1+\left(\frac{3}{2}-\frac{3}{2}i\right)
Divide 3-3i by 2 to get \frac{3}{2}-\frac{3}{2}i.
1+\frac{3}{2}-\frac{3}{2}i
Combine the real and imaginary parts in numbers 1 and \frac{3}{2}-\frac{3}{2}i.
\frac{5}{2}-\frac{3}{2}i
Add 1 to \frac{3}{2}.
Re(1+\frac{3\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Multiply both numerator and denominator of \frac{3}{1+i} by the complex conjugate of the denominator, 1-i.
Re(1+\frac{3\left(1-i\right)}{1^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(1+\frac{3\left(1-i\right)}{2})
By definition, i^{2} is -1. Calculate the denominator.
Re(1+\frac{3\times 1+3\left(-i\right)}{2})
Multiply 3 times 1-i.
Re(1+\frac{3-3i}{2})
Do the multiplications in 3\times 1+3\left(-i\right).
Re(1+\left(\frac{3}{2}-\frac{3}{2}i\right))
Divide 3-3i by 2 to get \frac{3}{2}-\frac{3}{2}i.
Re(1+\frac{3}{2}-\frac{3}{2}i)
Combine the real and imaginary parts in numbers 1 and \frac{3}{2}-\frac{3}{2}i.
Re(\frac{5}{2}-\frac{3}{2}i)
Add 1 to \frac{3}{2}.
\frac{5}{2}
The real part of \frac{5}{2}-\frac{3}{2}i is \frac{5}{2}.