Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6\left(x-6\right)\left(x+6\right)-6\times 26-\left(x-6\right)x-\left(x+6\right)x=0
Variable x cannot be equal to any of the values -6,6 since division by zero is not defined. Multiply both sides of the equation by 6\left(x-6\right)\left(x+6\right), the least common multiple of 6^{2}-x^{2},6x+6^{2},6x-6^{2}.
\left(6x-36\right)\left(x+6\right)-6\times 26-\left(x-6\right)x-\left(x+6\right)x=0
Use the distributive property to multiply 6 by x-6.
6x^{2}-216-6\times 26-\left(x-6\right)x-\left(x+6\right)x=0
Use the distributive property to multiply 6x-36 by x+6 and combine like terms.
6x^{2}-216-156-\left(x-6\right)x-\left(x+6\right)x=0
Multiply -6 and 26 to get -156.
6x^{2}-372-\left(x-6\right)x-\left(x+6\right)x=0
Subtract 156 from -216 to get -372.
6x^{2}-372-\left(x^{2}-6x\right)-\left(x+6\right)x=0
Use the distributive property to multiply x-6 by x.
6x^{2}-372-x^{2}+6x-\left(x+6\right)x=0
To find the opposite of x^{2}-6x, find the opposite of each term.
5x^{2}-372+6x-\left(x+6\right)x=0
Combine 6x^{2} and -x^{2} to get 5x^{2}.
5x^{2}-372+6x-\left(x^{2}+6x\right)=0
Use the distributive property to multiply x+6 by x.
5x^{2}-372+6x-x^{2}-6x=0
To find the opposite of x^{2}+6x, find the opposite of each term.
4x^{2}-372+6x-6x=0
Combine 5x^{2} and -x^{2} to get 4x^{2}.
4x^{2}-372=0
Combine 6x and -6x to get 0.
4x^{2}=372
Add 372 to both sides. Anything plus zero gives itself.
x^{2}=\frac{372}{4}
Divide both sides by 4.
x^{2}=93
Divide 372 by 4 to get 93.
x=\sqrt{93} x=-\sqrt{93}
Take the square root of both sides of the equation.
6\left(x-6\right)\left(x+6\right)-6\times 26-\left(x-6\right)x-\left(x+6\right)x=0
Variable x cannot be equal to any of the values -6,6 since division by zero is not defined. Multiply both sides of the equation by 6\left(x-6\right)\left(x+6\right), the least common multiple of 6^{2}-x^{2},6x+6^{2},6x-6^{2}.
\left(6x-36\right)\left(x+6\right)-6\times 26-\left(x-6\right)x-\left(x+6\right)x=0
Use the distributive property to multiply 6 by x-6.
6x^{2}-216-6\times 26-\left(x-6\right)x-\left(x+6\right)x=0
Use the distributive property to multiply 6x-36 by x+6 and combine like terms.
6x^{2}-216-156-\left(x-6\right)x-\left(x+6\right)x=0
Multiply -6 and 26 to get -156.
6x^{2}-372-\left(x-6\right)x-\left(x+6\right)x=0
Subtract 156 from -216 to get -372.
6x^{2}-372-\left(x^{2}-6x\right)-\left(x+6\right)x=0
Use the distributive property to multiply x-6 by x.
6x^{2}-372-x^{2}+6x-\left(x+6\right)x=0
To find the opposite of x^{2}-6x, find the opposite of each term.
5x^{2}-372+6x-\left(x+6\right)x=0
Combine 6x^{2} and -x^{2} to get 5x^{2}.
5x^{2}-372+6x-\left(x^{2}+6x\right)=0
Use the distributive property to multiply x+6 by x.
5x^{2}-372+6x-x^{2}-6x=0
To find the opposite of x^{2}+6x, find the opposite of each term.
4x^{2}-372+6x-6x=0
Combine 5x^{2} and -x^{2} to get 4x^{2}.
4x^{2}-372=0
Combine 6x and -6x to get 0.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-372\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 0 for b, and -372 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4\left(-372\right)}}{2\times 4}
Square 0.
x=\frac{0±\sqrt{-16\left(-372\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{0±\sqrt{5952}}{2\times 4}
Multiply -16 times -372.
x=\frac{0±8\sqrt{93}}{2\times 4}
Take the square root of 5952.
x=\frac{0±8\sqrt{93}}{8}
Multiply 2 times 4.
x=\sqrt{93}
Now solve the equation x=\frac{0±8\sqrt{93}}{8} when ± is plus.
x=-\sqrt{93}
Now solve the equation x=\frac{0±8\sqrt{93}}{8} when ± is minus.
x=\sqrt{93} x=-\sqrt{93}
The equation is now solved.