Solve for x
x=\sqrt{93}\approx 9.643650761
x=-\sqrt{93}\approx -9.643650761
Graph
Share
Copied to clipboard
6\left(x-6\right)\left(x+6\right)-6\times 26-\left(x-6\right)x-\left(x+6\right)x=0
Variable x cannot be equal to any of the values -6,6 since division by zero is not defined. Multiply both sides of the equation by 6\left(x-6\right)\left(x+6\right), the least common multiple of 6^{2}-x^{2},6x+6^{2},6x-6^{2}.
\left(6x-36\right)\left(x+6\right)-6\times 26-\left(x-6\right)x-\left(x+6\right)x=0
Use the distributive property to multiply 6 by x-6.
6x^{2}-216-6\times 26-\left(x-6\right)x-\left(x+6\right)x=0
Use the distributive property to multiply 6x-36 by x+6 and combine like terms.
6x^{2}-216-156-\left(x-6\right)x-\left(x+6\right)x=0
Multiply -6 and 26 to get -156.
6x^{2}-372-\left(x-6\right)x-\left(x+6\right)x=0
Subtract 156 from -216 to get -372.
6x^{2}-372-\left(x^{2}-6x\right)-\left(x+6\right)x=0
Use the distributive property to multiply x-6 by x.
6x^{2}-372-x^{2}+6x-\left(x+6\right)x=0
To find the opposite of x^{2}-6x, find the opposite of each term.
5x^{2}-372+6x-\left(x+6\right)x=0
Combine 6x^{2} and -x^{2} to get 5x^{2}.
5x^{2}-372+6x-\left(x^{2}+6x\right)=0
Use the distributive property to multiply x+6 by x.
5x^{2}-372+6x-x^{2}-6x=0
To find the opposite of x^{2}+6x, find the opposite of each term.
4x^{2}-372+6x-6x=0
Combine 5x^{2} and -x^{2} to get 4x^{2}.
4x^{2}-372=0
Combine 6x and -6x to get 0.
4x^{2}=372
Add 372 to both sides. Anything plus zero gives itself.
x^{2}=\frac{372}{4}
Divide both sides by 4.
x^{2}=93
Divide 372 by 4 to get 93.
x=\sqrt{93} x=-\sqrt{93}
Take the square root of both sides of the equation.
6\left(x-6\right)\left(x+6\right)-6\times 26-\left(x-6\right)x-\left(x+6\right)x=0
Variable x cannot be equal to any of the values -6,6 since division by zero is not defined. Multiply both sides of the equation by 6\left(x-6\right)\left(x+6\right), the least common multiple of 6^{2}-x^{2},6x+6^{2},6x-6^{2}.
\left(6x-36\right)\left(x+6\right)-6\times 26-\left(x-6\right)x-\left(x+6\right)x=0
Use the distributive property to multiply 6 by x-6.
6x^{2}-216-6\times 26-\left(x-6\right)x-\left(x+6\right)x=0
Use the distributive property to multiply 6x-36 by x+6 and combine like terms.
6x^{2}-216-156-\left(x-6\right)x-\left(x+6\right)x=0
Multiply -6 and 26 to get -156.
6x^{2}-372-\left(x-6\right)x-\left(x+6\right)x=0
Subtract 156 from -216 to get -372.
6x^{2}-372-\left(x^{2}-6x\right)-\left(x+6\right)x=0
Use the distributive property to multiply x-6 by x.
6x^{2}-372-x^{2}+6x-\left(x+6\right)x=0
To find the opposite of x^{2}-6x, find the opposite of each term.
5x^{2}-372+6x-\left(x+6\right)x=0
Combine 6x^{2} and -x^{2} to get 5x^{2}.
5x^{2}-372+6x-\left(x^{2}+6x\right)=0
Use the distributive property to multiply x+6 by x.
5x^{2}-372+6x-x^{2}-6x=0
To find the opposite of x^{2}+6x, find the opposite of each term.
4x^{2}-372+6x-6x=0
Combine 5x^{2} and -x^{2} to get 4x^{2}.
4x^{2}-372=0
Combine 6x and -6x to get 0.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-372\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 0 for b, and -372 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4\left(-372\right)}}{2\times 4}
Square 0.
x=\frac{0±\sqrt{-16\left(-372\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{0±\sqrt{5952}}{2\times 4}
Multiply -16 times -372.
x=\frac{0±8\sqrt{93}}{2\times 4}
Take the square root of 5952.
x=\frac{0±8\sqrt{93}}{8}
Multiply 2 times 4.
x=\sqrt{93}
Now solve the equation x=\frac{0±8\sqrt{93}}{8} when ± is plus.
x=-\sqrt{93}
Now solve the equation x=\frac{0±8\sqrt{93}}{8} when ± is minus.
x=\sqrt{93} x=-\sqrt{93}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}