Evaluate
\frac{\left(b+3\right)^{2}}{9}
Factor
\frac{\left(b+3\right)^{2}}{9}
Share
Copied to clipboard
\frac{3}{3}+\frac{2b}{3}+\frac{b^{2}}{9}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
\frac{3+2b}{3}+\frac{b^{2}}{9}
Since \frac{3}{3} and \frac{2b}{3} have the same denominator, add them by adding their numerators.
\frac{3\left(3+2b\right)}{9}+\frac{b^{2}}{9}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 9 is 9. Multiply \frac{3+2b}{3} times \frac{3}{3}.
\frac{3\left(3+2b\right)+b^{2}}{9}
Since \frac{3\left(3+2b\right)}{9} and \frac{b^{2}}{9} have the same denominator, add them by adding their numerators.
\frac{9+6b+b^{2}}{9}
Do the multiplications in 3\left(3+2b\right)+b^{2}.
\frac{9+6b+b^{2}}{9}
Factor out \frac{1}{9}.
\left(b+3\right)^{2}
Consider 9+6b+b^{2}. Use the perfect square formula, p^{2}+2pq+q^{2}=\left(p+q\right)^{2}, where p=b and q=3.
\frac{\left(b+3\right)^{2}}{9}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}