Evaluate
\frac{50}{21}\approx 2.380952381
Factor
\frac{2 \cdot 5 ^ {2}}{3 \cdot 7} = 2\frac{8}{21} = 2.380952380952381
Share
Copied to clipboard
1+\frac{2}{3+\frac{5}{\frac{3}{3}-\frac{1}{3}}}\times 2-\frac{1}{1-\frac{1}{1-\frac{1}{2}}}
Convert 1 to fraction \frac{3}{3}.
1+\frac{2}{3+\frac{5}{\frac{3-1}{3}}}\times 2-\frac{1}{1-\frac{1}{1-\frac{1}{2}}}
Since \frac{3}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
1+\frac{2}{3+\frac{5}{\frac{2}{3}}}\times 2-\frac{1}{1-\frac{1}{1-\frac{1}{2}}}
Subtract 1 from 3 to get 2.
1+\frac{2}{3+5\times \frac{3}{2}}\times 2-\frac{1}{1-\frac{1}{1-\frac{1}{2}}}
Divide 5 by \frac{2}{3} by multiplying 5 by the reciprocal of \frac{2}{3}.
1+\frac{2}{3+\frac{5\times 3}{2}}\times 2-\frac{1}{1-\frac{1}{1-\frac{1}{2}}}
Express 5\times \frac{3}{2} as a single fraction.
1+\frac{2}{3+\frac{15}{2}}\times 2-\frac{1}{1-\frac{1}{1-\frac{1}{2}}}
Multiply 5 and 3 to get 15.
1+\frac{2}{\frac{6}{2}+\frac{15}{2}}\times 2-\frac{1}{1-\frac{1}{1-\frac{1}{2}}}
Convert 3 to fraction \frac{6}{2}.
1+\frac{2}{\frac{6+15}{2}}\times 2-\frac{1}{1-\frac{1}{1-\frac{1}{2}}}
Since \frac{6}{2} and \frac{15}{2} have the same denominator, add them by adding their numerators.
1+\frac{2}{\frac{21}{2}}\times 2-\frac{1}{1-\frac{1}{1-\frac{1}{2}}}
Add 6 and 15 to get 21.
1+2\times \frac{2}{21}\times 2-\frac{1}{1-\frac{1}{1-\frac{1}{2}}}
Divide 2 by \frac{21}{2} by multiplying 2 by the reciprocal of \frac{21}{2}.
1+\frac{2\times 2}{21}\times 2-\frac{1}{1-\frac{1}{1-\frac{1}{2}}}
Express 2\times \frac{2}{21} as a single fraction.
1+\frac{4}{21}\times 2-\frac{1}{1-\frac{1}{1-\frac{1}{2}}}
Multiply 2 and 2 to get 4.
1+\frac{4\times 2}{21}-\frac{1}{1-\frac{1}{1-\frac{1}{2}}}
Express \frac{4}{21}\times 2 as a single fraction.
1+\frac{8}{21}-\frac{1}{1-\frac{1}{1-\frac{1}{2}}}
Multiply 4 and 2 to get 8.
\frac{21}{21}+\frac{8}{21}-\frac{1}{1-\frac{1}{1-\frac{1}{2}}}
Convert 1 to fraction \frac{21}{21}.
\frac{21+8}{21}-\frac{1}{1-\frac{1}{1-\frac{1}{2}}}
Since \frac{21}{21} and \frac{8}{21} have the same denominator, add them by adding their numerators.
\frac{29}{21}-\frac{1}{1-\frac{1}{1-\frac{1}{2}}}
Add 21 and 8 to get 29.
\frac{29}{21}-\frac{1}{1-\frac{1}{\frac{2}{2}-\frac{1}{2}}}
Convert 1 to fraction \frac{2}{2}.
\frac{29}{21}-\frac{1}{1-\frac{1}{\frac{2-1}{2}}}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{29}{21}-\frac{1}{1-\frac{1}{\frac{1}{2}}}
Subtract 1 from 2 to get 1.
\frac{29}{21}-\frac{1}{1-1\times 2}
Divide 1 by \frac{1}{2} by multiplying 1 by the reciprocal of \frac{1}{2}.
\frac{29}{21}-\frac{1}{1-2}
Multiply 1 and 2 to get 2.
\frac{29}{21}-\frac{1}{-1}
Subtract 2 from 1 to get -1.
\frac{29}{21}-\left(-1\right)
Divide 1 by -1 to get -1.
\frac{29}{21}+1
The opposite of -1 is 1.
\frac{29}{21}+\frac{21}{21}
Convert 1 to fraction \frac{21}{21}.
\frac{29+21}{21}
Since \frac{29}{21} and \frac{21}{21} have the same denominator, add them by adding their numerators.
\frac{50}{21}
Add 29 and 21 to get 50.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}