Evaluate
\frac{28}{27}\approx 1.037037037
Share
Copied to clipboard
1+\left(\frac{1}{3}\right)^{3}-\sqrt{12}\cos(30)+|-4|-\left(-2\right)^{0}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract -2 from 1 to get 3.
1+\frac{1}{27}-\sqrt{12}\cos(30)+|-4|-\left(-2\right)^{0}
Calculate \frac{1}{3} to the power of 3 and get \frac{1}{27}.
\frac{28}{27}-\sqrt{12}\cos(30)+|-4|-\left(-2\right)^{0}
Add 1 and \frac{1}{27} to get \frac{28}{27}.
\frac{28}{27}-2\sqrt{3}\cos(30)+|-4|-\left(-2\right)^{0}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{28}{27}-2\sqrt{3}\times \frac{\sqrt{3}}{2}+|-4|-\left(-2\right)^{0}
Get the value of \cos(30) from trigonometric values table.
\frac{28}{27}-\sqrt{3}\sqrt{3}+|-4|-\left(-2\right)^{0}
Cancel out 2 and 2.
\frac{28}{27}-3+|-4|-\left(-2\right)^{0}
Multiply \sqrt{3} and \sqrt{3} to get 3.
-\frac{53}{27}+|-4|-\left(-2\right)^{0}
Subtract 3 from \frac{28}{27} to get -\frac{53}{27}.
-\frac{53}{27}+4-\left(-2\right)^{0}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -4 is 4.
\frac{55}{27}-\left(-2\right)^{0}
Add -\frac{53}{27} and 4 to get \frac{55}{27}.
\frac{55}{27}-1
Calculate -2 to the power of 0 and get 1.
\frac{28}{27}
Subtract 1 from \frac{55}{27} to get \frac{28}{27}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}