Evaluate
\frac{3}{2}=1.5
Factor
\frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
1+\frac{\frac{19+3}{19}}{2+\frac{1}{3+\frac{1}{4+\frac{1}{5-\frac{9}{2}}}}}
Multiply 1 and 19 to get 19.
1+\frac{\frac{22}{19}}{2+\frac{1}{3+\frac{1}{4+\frac{1}{5-\frac{9}{2}}}}}
Add 19 and 3 to get 22.
1+\frac{\frac{22}{19}}{2+\frac{1}{3+\frac{1}{4+\frac{1}{\frac{10}{2}-\frac{9}{2}}}}}
Convert 5 to fraction \frac{10}{2}.
1+\frac{\frac{22}{19}}{2+\frac{1}{3+\frac{1}{4+\frac{1}{\frac{10-9}{2}}}}}
Since \frac{10}{2} and \frac{9}{2} have the same denominator, subtract them by subtracting their numerators.
1+\frac{\frac{22}{19}}{2+\frac{1}{3+\frac{1}{4+\frac{1}{\frac{1}{2}}}}}
Subtract 9 from 10 to get 1.
1+\frac{\frac{22}{19}}{2+\frac{1}{3+\frac{1}{4+1\times 2}}}
Divide 1 by \frac{1}{2} by multiplying 1 by the reciprocal of \frac{1}{2}.
1+\frac{\frac{22}{19}}{2+\frac{1}{3+\frac{1}{4+2}}}
Multiply 1 and 2 to get 2.
1+\frac{\frac{22}{19}}{2+\frac{1}{3+\frac{1}{6}}}
Add 4 and 2 to get 6.
1+\frac{\frac{22}{19}}{2+\frac{1}{\frac{18}{6}+\frac{1}{6}}}
Convert 3 to fraction \frac{18}{6}.
1+\frac{\frac{22}{19}}{2+\frac{1}{\frac{18+1}{6}}}
Since \frac{18}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
1+\frac{\frac{22}{19}}{2+\frac{1}{\frac{19}{6}}}
Add 18 and 1 to get 19.
1+\frac{\frac{22}{19}}{2+1\times \frac{6}{19}}
Divide 1 by \frac{19}{6} by multiplying 1 by the reciprocal of \frac{19}{6}.
1+\frac{\frac{22}{19}}{2+\frac{6}{19}}
Multiply 1 and \frac{6}{19} to get \frac{6}{19}.
1+\frac{\frac{22}{19}}{\frac{38}{19}+\frac{6}{19}}
Convert 2 to fraction \frac{38}{19}.
1+\frac{\frac{22}{19}}{\frac{38+6}{19}}
Since \frac{38}{19} and \frac{6}{19} have the same denominator, add them by adding their numerators.
1+\frac{\frac{22}{19}}{\frac{44}{19}}
Add 38 and 6 to get 44.
1+\frac{22}{19}\times \frac{19}{44}
Divide \frac{22}{19} by \frac{44}{19} by multiplying \frac{22}{19} by the reciprocal of \frac{44}{19}.
1+\frac{22\times 19}{19\times 44}
Multiply \frac{22}{19} times \frac{19}{44} by multiplying numerator times numerator and denominator times denominator.
1+\frac{22}{44}
Cancel out 19 in both numerator and denominator.
1+\frac{1}{2}
Reduce the fraction \frac{22}{44} to lowest terms by extracting and canceling out 22.
\frac{2}{2}+\frac{1}{2}
Convert 1 to fraction \frac{2}{2}.
\frac{2+1}{2}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{3}{2}
Add 2 and 1 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}