Evaluate
2\left(\sqrt{3}+2\right)\approx 7.464101615
Factor
2 {(\sqrt{3} + 2)} = 7.464101615
Share
Copied to clipboard
1+\frac{\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4}+2\times \frac{\sqrt{6}+\sqrt{2}}{2}\times \frac{\sqrt{2}}{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{6}+\sqrt{2}\right)^{2}.
1+\frac{6+2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4}+2\times \frac{\sqrt{6}+\sqrt{2}}{2}\times \frac{\sqrt{2}}{2}
The square of \sqrt{6} is 6.
1+\frac{6+2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4}+2\times \frac{\sqrt{6}+\sqrt{2}}{2}\times \frac{\sqrt{2}}{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
1+\frac{6+2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}}{4}+2\times \frac{\sqrt{6}+\sqrt{2}}{2}\times \frac{\sqrt{2}}{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
1+\frac{6+4\sqrt{3}+\left(\sqrt{2}\right)^{2}}{4}+2\times \frac{\sqrt{6}+\sqrt{2}}{2}\times \frac{\sqrt{2}}{2}
Multiply 2 and 2 to get 4.
1+\frac{6+4\sqrt{3}+2}{4}+2\times \frac{\sqrt{6}+\sqrt{2}}{2}\times \frac{\sqrt{2}}{2}
The square of \sqrt{2} is 2.
1+\frac{8+4\sqrt{3}}{4}+2\times \frac{\sqrt{6}+\sqrt{2}}{2}\times \frac{\sqrt{2}}{2}
Add 6 and 2 to get 8.
1+2+\sqrt{3}+2\times \frac{\sqrt{6}+\sqrt{2}}{2}\times \frac{\sqrt{2}}{2}
Divide each term of 8+4\sqrt{3} by 4 to get 2+\sqrt{3}.
3+\sqrt{3}+2\times \frac{\sqrt{6}+\sqrt{2}}{2}\times \frac{\sqrt{2}}{2}
Add 1 and 2 to get 3.
3+\sqrt{3}+\left(\sqrt{6}+\sqrt{2}\right)\times \frac{\sqrt{2}}{2}
Cancel out 2 and 2.
3+\sqrt{3}+\frac{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2}}{2}
Express \left(\sqrt{6}+\sqrt{2}\right)\times \frac{\sqrt{2}}{2} as a single fraction.
\frac{2\left(3+\sqrt{3}\right)}{2}+\frac{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3+\sqrt{3} times \frac{2}{2}.
\frac{2\left(3+\sqrt{3}\right)+\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2}}{2}
Since \frac{2\left(3+\sqrt{3}\right)}{2} and \frac{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2}}{2} have the same denominator, add them by adding their numerators.
\frac{6+2\sqrt{3}+2\sqrt{3}+2}{2}
Do the multiplications in 2\left(3+\sqrt{3}\right)+\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2}.
\frac{8+4\sqrt{3}}{2}
Do the calculations in 6+2\sqrt{3}+2\sqrt{3}+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}