Solve for x
x=5\sqrt{145}+55\approx 115.207972894
x=55-5\sqrt{145}\approx -5.207972894
Graph
Share
Copied to clipboard
0\times 4\times 10x\left(x+10\right)+x\left(x+10\right)\times 20=\left(10x+100\right)\times 120+10x\times 120
Variable x cannot be equal to any of the values -10,0 since division by zero is not defined. Multiply both sides of the equation by 10x\left(x+10\right), the least common multiple of 10,x,x+10.
0\times 10x\left(x+10\right)+x\left(x+10\right)\times 20=\left(10x+100\right)\times 120+10x\times 120
Multiply 0 and 4 to get 0.
0x\left(x+10\right)+x\left(x+10\right)\times 20=\left(10x+100\right)\times 120+10x\times 120
Multiply 0 and 10 to get 0.
0+x\left(x+10\right)\times 20=\left(10x+100\right)\times 120+10x\times 120
Anything times zero gives zero.
0+\left(x^{2}+10x\right)\times 20=\left(10x+100\right)\times 120+10x\times 120
Use the distributive property to multiply x by x+10.
0+20x^{2}+200x=\left(10x+100\right)\times 120+10x\times 120
Use the distributive property to multiply x^{2}+10x by 20.
20x^{2}+200x=\left(10x+100\right)\times 120+10x\times 120
Anything plus zero gives itself.
20x^{2}+200x=1200x+12000+10x\times 120
Use the distributive property to multiply 10x+100 by 120.
20x^{2}+200x=1200x+12000+1200x
Multiply 10 and 120 to get 1200.
20x^{2}+200x=2400x+12000
Combine 1200x and 1200x to get 2400x.
20x^{2}+200x-2400x=12000
Subtract 2400x from both sides.
20x^{2}-2200x=12000
Combine 200x and -2400x to get -2200x.
20x^{2}-2200x-12000=0
Subtract 12000 from both sides.
x=\frac{-\left(-2200\right)±\sqrt{\left(-2200\right)^{2}-4\times 20\left(-12000\right)}}{2\times 20}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 20 for a, -2200 for b, and -12000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2200\right)±\sqrt{4840000-4\times 20\left(-12000\right)}}{2\times 20}
Square -2200.
x=\frac{-\left(-2200\right)±\sqrt{4840000-80\left(-12000\right)}}{2\times 20}
Multiply -4 times 20.
x=\frac{-\left(-2200\right)±\sqrt{4840000+960000}}{2\times 20}
Multiply -80 times -12000.
x=\frac{-\left(-2200\right)±\sqrt{5800000}}{2\times 20}
Add 4840000 to 960000.
x=\frac{-\left(-2200\right)±200\sqrt{145}}{2\times 20}
Take the square root of 5800000.
x=\frac{2200±200\sqrt{145}}{2\times 20}
The opposite of -2200 is 2200.
x=\frac{2200±200\sqrt{145}}{40}
Multiply 2 times 20.
x=\frac{200\sqrt{145}+2200}{40}
Now solve the equation x=\frac{2200±200\sqrt{145}}{40} when ± is plus. Add 2200 to 200\sqrt{145}.
x=5\sqrt{145}+55
Divide 2200+200\sqrt{145} by 40.
x=\frac{2200-200\sqrt{145}}{40}
Now solve the equation x=\frac{2200±200\sqrt{145}}{40} when ± is minus. Subtract 200\sqrt{145} from 2200.
x=55-5\sqrt{145}
Divide 2200-200\sqrt{145} by 40.
x=5\sqrt{145}+55 x=55-5\sqrt{145}
The equation is now solved.
0\times 4\times 10x\left(x+10\right)+x\left(x+10\right)\times 20=\left(10x+100\right)\times 120+10x\times 120
Variable x cannot be equal to any of the values -10,0 since division by zero is not defined. Multiply both sides of the equation by 10x\left(x+10\right), the least common multiple of 10,x,x+10.
0\times 10x\left(x+10\right)+x\left(x+10\right)\times 20=\left(10x+100\right)\times 120+10x\times 120
Multiply 0 and 4 to get 0.
0x\left(x+10\right)+x\left(x+10\right)\times 20=\left(10x+100\right)\times 120+10x\times 120
Multiply 0 and 10 to get 0.
0+x\left(x+10\right)\times 20=\left(10x+100\right)\times 120+10x\times 120
Anything times zero gives zero.
0+\left(x^{2}+10x\right)\times 20=\left(10x+100\right)\times 120+10x\times 120
Use the distributive property to multiply x by x+10.
0+20x^{2}+200x=\left(10x+100\right)\times 120+10x\times 120
Use the distributive property to multiply x^{2}+10x by 20.
20x^{2}+200x=\left(10x+100\right)\times 120+10x\times 120
Anything plus zero gives itself.
20x^{2}+200x=1200x+12000+10x\times 120
Use the distributive property to multiply 10x+100 by 120.
20x^{2}+200x=1200x+12000+1200x
Multiply 10 and 120 to get 1200.
20x^{2}+200x=2400x+12000
Combine 1200x and 1200x to get 2400x.
20x^{2}+200x-2400x=12000
Subtract 2400x from both sides.
20x^{2}-2200x=12000
Combine 200x and -2400x to get -2200x.
\frac{20x^{2}-2200x}{20}=\frac{12000}{20}
Divide both sides by 20.
x^{2}+\left(-\frac{2200}{20}\right)x=\frac{12000}{20}
Dividing by 20 undoes the multiplication by 20.
x^{2}-110x=\frac{12000}{20}
Divide -2200 by 20.
x^{2}-110x=600
Divide 12000 by 20.
x^{2}-110x+\left(-55\right)^{2}=600+\left(-55\right)^{2}
Divide -110, the coefficient of the x term, by 2 to get -55. Then add the square of -55 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-110x+3025=600+3025
Square -55.
x^{2}-110x+3025=3625
Add 600 to 3025.
\left(x-55\right)^{2}=3625
Factor x^{2}-110x+3025. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-55\right)^{2}}=\sqrt{3625}
Take the square root of both sides of the equation.
x-55=5\sqrt{145} x-55=-5\sqrt{145}
Simplify.
x=5\sqrt{145}+55 x=55-5\sqrt{145}
Add 55 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}