Solve for x
x\geq -\frac{97}{73}
Graph
Share
Copied to clipboard
6.3x+5.4\geq 1.7-\left(x+6\right)
Use the distributive property to multiply 0.9 by 7x+6.
6.3x+5.4\geq 1.7-x-6
To find the opposite of x+6, find the opposite of each term.
6.3x+5.4\geq -4.3-x
Subtract 6 from 1.7 to get -4.3.
6.3x+5.4+x\geq -4.3
Add x to both sides.
7.3x+5.4\geq -4.3
Combine 6.3x and x to get 7.3x.
7.3x\geq -4.3-5.4
Subtract 5.4 from both sides.
7.3x\geq -9.7
Subtract 5.4 from -4.3 to get -9.7.
x\geq \frac{-9.7}{7.3}
Divide both sides by 7.3. Since 7.3 is positive, the inequality direction remains the same.
x\geq \frac{-97}{73}
Expand \frac{-9.7}{7.3} by multiplying both numerator and the denominator by 10.
x\geq -\frac{97}{73}
Fraction \frac{-97}{73} can be rewritten as -\frac{97}{73} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}