Solve for x
x = -\frac{3528}{415} = -8\frac{208}{415} \approx -8.501204819
Graph
Share
Copied to clipboard
\frac{0.84}{0.1}=\frac{-x+\sqrt{x^{2}+4\times 0.1x}}{2}
Divide both sides by 0.1.
\frac{84}{10}=\frac{-x+\sqrt{x^{2}+4\times 0.1x}}{2}
Expand \frac{0.84}{0.1} by multiplying both numerator and the denominator by 100.
\frac{42}{5}=\frac{-x+\sqrt{x^{2}+4\times 0.1x}}{2}
Reduce the fraction \frac{84}{10} to lowest terms by extracting and canceling out 2.
\frac{42}{5}\times 2=-x+\sqrt{x^{2}+4\times 0.1x}
Multiply both sides by 2.
\frac{84}{5}=-x+\sqrt{x^{2}+4\times 0.1x}
Multiply \frac{42}{5} and 2 to get \frac{84}{5}.
\frac{84}{5}=-x+\sqrt{x^{2}+0.4x}
Multiply 4 and 0.1 to get 0.4.
-x+\sqrt{x^{2}+0.4x}=\frac{84}{5}
Swap sides so that all variable terms are on the left hand side.
\sqrt{x^{2}+0.4x}=\frac{84}{5}-\left(-x\right)
Subtract -x from both sides of the equation.
\sqrt{x^{2}+0.4x}=\frac{84}{5}+x
Multiply -1 and -1 to get 1.
\left(\sqrt{x^{2}+0.4x}\right)^{2}=\left(\frac{84}{5}+x\right)^{2}
Square both sides of the equation.
x^{2}+0.4x=\left(\frac{84}{5}+x\right)^{2}
Calculate \sqrt{x^{2}+0.4x} to the power of 2 and get x^{2}+0.4x.
x^{2}+0.4x=\frac{7056}{25}+\frac{168}{5}x+x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{84}{5}+x\right)^{2}.
x^{2}+0.4x-\frac{168}{5}x=\frac{7056}{25}+x^{2}
Subtract \frac{168}{5}x from both sides.
x^{2}-\frac{166}{5}x=\frac{7056}{25}+x^{2}
Combine 0.4x and -\frac{168}{5}x to get -\frac{166}{5}x.
x^{2}-\frac{166}{5}x-x^{2}=\frac{7056}{25}
Subtract x^{2} from both sides.
-\frac{166}{5}x=\frac{7056}{25}
Combine x^{2} and -x^{2} to get 0.
x=\frac{7056}{25}\left(-\frac{5}{166}\right)
Multiply both sides by -\frac{5}{166}, the reciprocal of -\frac{166}{5}.
x=\frac{7056\left(-5\right)}{25\times 166}
Multiply \frac{7056}{25} times -\frac{5}{166} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-35280}{4150}
Do the multiplications in the fraction \frac{7056\left(-5\right)}{25\times 166}.
x=-\frac{3528}{415}
Reduce the fraction \frac{-35280}{4150} to lowest terms by extracting and canceling out 10.
0.84=0.1\times \frac{-\left(-\frac{3528}{415}\right)+\sqrt{\left(-\frac{3528}{415}\right)^{2}+4\times 0.1\left(-\frac{3528}{415}\right)}}{2}
Substitute -\frac{3528}{415} for x in the equation 0.84=0.1\times \frac{-x+\sqrt{x^{2}+4\times 0.1x}}{2}.
0.84=\frac{21}{25}
Simplify. The value x=-\frac{3528}{415} satisfies the equation.
x=-\frac{3528}{415}
Equation \sqrt{x^{2}+\frac{2x}{5}}=x+\frac{84}{5} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}