Solve for x
x=\frac{\sqrt{3}}{4}\approx 0.433012702
x=-\frac{\sqrt{3}}{4}\approx -0.433012702
Graph
Share
Copied to clipboard
0.64+\left(\frac{16}{5}x\right)^{2}=1.6^{2}
Calculate 0.8 to the power of 2 and get 0.64.
0.64+\left(\frac{16}{5}\right)^{2}x^{2}=1.6^{2}
Expand \left(\frac{16}{5}x\right)^{2}.
0.64+\frac{256}{25}x^{2}=1.6^{2}
Calculate \frac{16}{5} to the power of 2 and get \frac{256}{25}.
0.64+\frac{256}{25}x^{2}=2.56
Calculate 1.6 to the power of 2 and get 2.56.
\frac{256}{25}x^{2}=2.56-0.64
Subtract 0.64 from both sides.
\frac{256}{25}x^{2}=1.92
Subtract 0.64 from 2.56 to get 1.92.
x^{2}=1.92\times \frac{25}{256}
Multiply both sides by \frac{25}{256}, the reciprocal of \frac{256}{25}.
x^{2}=\frac{3}{16}
Multiply 1.92 and \frac{25}{256} to get \frac{3}{16}.
x=\frac{\sqrt{3}}{4} x=-\frac{\sqrt{3}}{4}
Take the square root of both sides of the equation.
0.64+\left(\frac{16}{5}x\right)^{2}=1.6^{2}
Calculate 0.8 to the power of 2 and get 0.64.
0.64+\left(\frac{16}{5}\right)^{2}x^{2}=1.6^{2}
Expand \left(\frac{16}{5}x\right)^{2}.
0.64+\frac{256}{25}x^{2}=1.6^{2}
Calculate \frac{16}{5} to the power of 2 and get \frac{256}{25}.
0.64+\frac{256}{25}x^{2}=2.56
Calculate 1.6 to the power of 2 and get 2.56.
0.64+\frac{256}{25}x^{2}-2.56=0
Subtract 2.56 from both sides.
-1.92+\frac{256}{25}x^{2}=0
Subtract 2.56 from 0.64 to get -1.92.
\frac{256}{25}x^{2}-1.92=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times \frac{256}{25}\left(-1.92\right)}}{2\times \frac{256}{25}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{256}{25} for a, 0 for b, and -1.92 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{256}{25}\left(-1.92\right)}}{2\times \frac{256}{25}}
Square 0.
x=\frac{0±\sqrt{-\frac{1024}{25}\left(-1.92\right)}}{2\times \frac{256}{25}}
Multiply -4 times \frac{256}{25}.
x=\frac{0±\sqrt{\frac{49152}{625}}}{2\times \frac{256}{25}}
Multiply -\frac{1024}{25} times -1.92 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{0±\frac{128\sqrt{3}}{25}}{2\times \frac{256}{25}}
Take the square root of \frac{49152}{625}.
x=\frac{0±\frac{128\sqrt{3}}{25}}{\frac{512}{25}}
Multiply 2 times \frac{256}{25}.
x=\frac{\sqrt{3}}{4}
Now solve the equation x=\frac{0±\frac{128\sqrt{3}}{25}}{\frac{512}{25}} when ± is plus.
x=-\frac{\sqrt{3}}{4}
Now solve the equation x=\frac{0±\frac{128\sqrt{3}}{25}}{\frac{512}{25}} when ± is minus.
x=\frac{\sqrt{3}}{4} x=-\frac{\sqrt{3}}{4}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}