Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

0.64+\left(\frac{16}{5}x\right)^{2}=1.6^{2}
Calculate 0.8 to the power of 2 and get 0.64.
0.64+\left(\frac{16}{5}\right)^{2}x^{2}=1.6^{2}
Expand \left(\frac{16}{5}x\right)^{2}.
0.64+\frac{256}{25}x^{2}=1.6^{2}
Calculate \frac{16}{5} to the power of 2 and get \frac{256}{25}.
0.64+\frac{256}{25}x^{2}=2.56
Calculate 1.6 to the power of 2 and get 2.56.
\frac{256}{25}x^{2}=2.56-0.64
Subtract 0.64 from both sides.
\frac{256}{25}x^{2}=1.92
Subtract 0.64 from 2.56 to get 1.92.
x^{2}=1.92\times \frac{25}{256}
Multiply both sides by \frac{25}{256}, the reciprocal of \frac{256}{25}.
x^{2}=\frac{3}{16}
Multiply 1.92 and \frac{25}{256} to get \frac{3}{16}.
x=\frac{\sqrt{3}}{4} x=-\frac{\sqrt{3}}{4}
Take the square root of both sides of the equation.
0.64+\left(\frac{16}{5}x\right)^{2}=1.6^{2}
Calculate 0.8 to the power of 2 and get 0.64.
0.64+\left(\frac{16}{5}\right)^{2}x^{2}=1.6^{2}
Expand \left(\frac{16}{5}x\right)^{2}.
0.64+\frac{256}{25}x^{2}=1.6^{2}
Calculate \frac{16}{5} to the power of 2 and get \frac{256}{25}.
0.64+\frac{256}{25}x^{2}=2.56
Calculate 1.6 to the power of 2 and get 2.56.
0.64+\frac{256}{25}x^{2}-2.56=0
Subtract 2.56 from both sides.
-1.92+\frac{256}{25}x^{2}=0
Subtract 2.56 from 0.64 to get -1.92.
\frac{256}{25}x^{2}-1.92=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times \frac{256}{25}\left(-1.92\right)}}{2\times \frac{256}{25}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{256}{25} for a, 0 for b, and -1.92 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{256}{25}\left(-1.92\right)}}{2\times \frac{256}{25}}
Square 0.
x=\frac{0±\sqrt{-\frac{1024}{25}\left(-1.92\right)}}{2\times \frac{256}{25}}
Multiply -4 times \frac{256}{25}.
x=\frac{0±\sqrt{\frac{49152}{625}}}{2\times \frac{256}{25}}
Multiply -\frac{1024}{25} times -1.92 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{0±\frac{128\sqrt{3}}{25}}{2\times \frac{256}{25}}
Take the square root of \frac{49152}{625}.
x=\frac{0±\frac{128\sqrt{3}}{25}}{\frac{512}{25}}
Multiply 2 times \frac{256}{25}.
x=\frac{\sqrt{3}}{4}
Now solve the equation x=\frac{0±\frac{128\sqrt{3}}{25}}{\frac{512}{25}} when ± is plus.
x=-\frac{\sqrt{3}}{4}
Now solve the equation x=\frac{0±\frac{128\sqrt{3}}{25}}{\frac{512}{25}} when ± is minus.
x=\frac{\sqrt{3}}{4} x=-\frac{\sqrt{3}}{4}
The equation is now solved.