Solve for a
a=\frac{160}{6561}\approx 0.024386526
Share
Copied to clipboard
0.8=\frac{1}{2}a\times 65.61
Calculate 8.1 to the power of 2 and get 65.61.
0.8=\frac{1}{2}a\times \frac{6561}{100}
Convert decimal number 65.61 to fraction \frac{6561}{100}.
0.8=\frac{1\times 6561}{2\times 100}a
Multiply \frac{1}{2} times \frac{6561}{100} by multiplying numerator times numerator and denominator times denominator.
0.8=\frac{6561}{200}a
Do the multiplications in the fraction \frac{1\times 6561}{2\times 100}.
\frac{6561}{200}a=0.8
Swap sides so that all variable terms are on the left hand side.
a=0.8\times \frac{200}{6561}
Multiply both sides by \frac{200}{6561}, the reciprocal of \frac{6561}{200}.
a=\frac{4}{5}\times \frac{200}{6561}
Convert decimal number 0.8 to fraction \frac{8}{10}. Reduce the fraction \frac{8}{10} to lowest terms by extracting and canceling out 2.
a=\frac{4\times 200}{5\times 6561}
Multiply \frac{4}{5} times \frac{200}{6561} by multiplying numerator times numerator and denominator times denominator.
a=\frac{800}{32805}
Do the multiplications in the fraction \frac{4\times 200}{5\times 6561}.
a=\frac{160}{6561}
Reduce the fraction \frac{800}{32805} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}