Solve for x
x=\frac{2\sqrt{60186}}{15}-10\approx 22.710446853
x=-\frac{2\sqrt{60186}}{15}-10\approx -42.710446853
Graph
Share
Copied to clipboard
0.75x^{2}+15x-727.48=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-15±\sqrt{15^{2}-4\times 0.75\left(-727.48\right)}}{2\times 0.75}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.75 for a, 15 for b, and -727.48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-15±\sqrt{225-4\times 0.75\left(-727.48\right)}}{2\times 0.75}
Square 15.
x=\frac{-15±\sqrt{225-3\left(-727.48\right)}}{2\times 0.75}
Multiply -4 times 0.75.
x=\frac{-15±\sqrt{225+2182.44}}{2\times 0.75}
Multiply -3 times -727.48.
x=\frac{-15±\sqrt{2407.44}}{2\times 0.75}
Add 225 to 2182.44.
x=\frac{-15±\frac{\sqrt{60186}}{5}}{2\times 0.75}
Take the square root of 2407.44.
x=\frac{-15±\frac{\sqrt{60186}}{5}}{1.5}
Multiply 2 times 0.75.
x=\frac{\frac{\sqrt{60186}}{5}-15}{1.5}
Now solve the equation x=\frac{-15±\frac{\sqrt{60186}}{5}}{1.5} when ± is plus. Add -15 to \frac{\sqrt{60186}}{5}.
x=\frac{2\sqrt{60186}}{15}-10
Divide -15+\frac{\sqrt{60186}}{5} by 1.5 by multiplying -15+\frac{\sqrt{60186}}{5} by the reciprocal of 1.5.
x=\frac{-\frac{\sqrt{60186}}{5}-15}{1.5}
Now solve the equation x=\frac{-15±\frac{\sqrt{60186}}{5}}{1.5} when ± is minus. Subtract \frac{\sqrt{60186}}{5} from -15.
x=-\frac{2\sqrt{60186}}{15}-10
Divide -15-\frac{\sqrt{60186}}{5} by 1.5 by multiplying -15-\frac{\sqrt{60186}}{5} by the reciprocal of 1.5.
x=\frac{2\sqrt{60186}}{15}-10 x=-\frac{2\sqrt{60186}}{15}-10
The equation is now solved.
0.75x^{2}+15x-727.48=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
0.75x^{2}+15x-727.48-\left(-727.48\right)=-\left(-727.48\right)
Add 727.48 to both sides of the equation.
0.75x^{2}+15x=-\left(-727.48\right)
Subtracting -727.48 from itself leaves 0.
0.75x^{2}+15x=727.48
Subtract -727.48 from 0.
\frac{0.75x^{2}+15x}{0.75}=\frac{727.48}{0.75}
Divide both sides of the equation by 0.75, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{15}{0.75}x=\frac{727.48}{0.75}
Dividing by 0.75 undoes the multiplication by 0.75.
x^{2}+20x=\frac{727.48}{0.75}
Divide 15 by 0.75 by multiplying 15 by the reciprocal of 0.75.
x^{2}+20x=\frac{72748}{75}
Divide 727.48 by 0.75 by multiplying 727.48 by the reciprocal of 0.75.
x^{2}+20x+10^{2}=\frac{72748}{75}+10^{2}
Divide 20, the coefficient of the x term, by 2 to get 10. Then add the square of 10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+20x+100=\frac{72748}{75}+100
Square 10.
x^{2}+20x+100=\frac{80248}{75}
Add \frac{72748}{75} to 100.
\left(x+10\right)^{2}=\frac{80248}{75}
Factor x^{2}+20x+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+10\right)^{2}}=\sqrt{\frac{80248}{75}}
Take the square root of both sides of the equation.
x+10=\frac{2\sqrt{60186}}{15} x+10=-\frac{2\sqrt{60186}}{15}
Simplify.
x=\frac{2\sqrt{60186}}{15}-10 x=-\frac{2\sqrt{60186}}{15}-10
Subtract 10 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}